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On the Relationship between Fourier and Response Spectra:

Implications for the Adjustment of Empirical Ground-Motion

Prediction Equations (GMPEs)

by Sanjay Singh Bora, Frank Scherbaum,* Nicolas Kuehn, and Peter Stafford

Abstract The functional form of empirical response spectral ground-motion predic-
tion equations (GMPEs) is often derived using concepts borrowed from Fourier spectral
modeling of ground motion. As these GMPEs are subsequently calibrated with empirical
observations, this may not appear to pose any major problems in the prediction of
ground motion for a particular earthquake scenario. However, the assumption that Fou-
rier spectral concepts persist for response spectra can lead to undesirable consequences
when it comes to the adjustment of response spectral GMPEs to represent conditions not
covered in the original empirical data set. In this context, a couple of important questions
arise, for example, what are the distinctions and/or similarities between Fourier and
response spectra of ground motions? And, if they are different, then what is the mecha-
nism responsible for such differences and how do adjustments that are made to Fourier
amplitude spectrum (FAS) manifest in response spectra? The present article explores the
relationship between the Fourier and response spectrum of ground motion by using
random vibration theory (RVT). With a simple Brune (1970, 1971) source model, RVT-
generated acceleration spectra for a fixed magnitude and distance scenario are used. The
RVT analyses reveal that the scaling of low oscillator-frequency response spectral ordi-
nates can be treated as being equivalent to the scaling of the corresponding Fourier
spectral ordinates. However, the high oscillator-frequency response spectral ordinates
are controlled by a rather wide band of Fourier spectral ordinates. In fact, the peak
ground acceleration, counter to the popular perception that it is a reflection of the high-
frequency characteristics of ground motion, is controlled by the entire Fourier spectrum
of ground motion. Additionally, this article demonstrates how an adjustment made to
FAS is similar or different to the same adjustment made to response spectral ordinates.
For this purpose, two cases: adjustments to the stress parameter (Δσ) (source term), and
adjustments to the attributes reflecting site response (VS!κ0) are considered.

Introduction

In the current practice of probabilistic seismic-hazard
analysis (PSHA) the most commonly used ground-motion in-
tensity measure (GMIM) is the response spectral ordinate cor-
responding to a single-degree-of-freedom (SDOF) oscillator
with a particular level of damping (e.g., 5% of critical damp-
ing). Consequently, most of the empirical ground-motion
prediction equations (GMPEs) found in the literature are de-
rived for response spectral ordinates of the SDOF oscillator
and essentially provide an estimate of the conditional distri-
bution of a GMIM for a particular earthquake scenario. The
functional forms that are used in the development of the re-

sponse spectral GMPEs are frequently based on concepts and
scaling laws borrowed from Fourier spectral representations
of ground motion. This transfer of concepts from a linear
system domain to a nonlinear system domain may not have
major consequences regarding the model predictions in a
normal usage case, but in the context of the adjustment of
median predictions to account for differences in seismologi-
cal characteristics it can lead to some unrealistic behaviors of
response spectral GMPEs. For example, the stress parameter
(Δσ) is associated with the high-frequency signal strength
in the Fourier amplitude spectrum (FAS) of ground motion
(Atkinson and Beresnev, 1997) and determines the shape of
the source spectrum (Brune, 1970, 1971). Similarly, the site-
related attenuation parameter κ0 is linked with the fall-off of
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high-frequency amplitudes in the FAS of accelerograms.
However, as we will illustrate in this article from different
perspectives, the high-frequency spectral content of response
spectra is not directly proportional to the high-frequency
spectral content of the corresponding Fourier spectrum. As
a consequence, the stress parameter Δσ and site-related at-
tenuation parameter κ0 influence the high-frequency content
of the response spectrum in ways which might be considered
counterintuitive if one simply assumes similar behavior of
Fourier and response spectra.

Commonly, empirical GMPEs are derived by performing
regression analysis over a database of earthquake records that
are recorded at different sites. For performing a site-specific
PSHA, for example, in conjunction with the single-station
sigma framework (Atkinson, 2006; Rodriguez-Marek et al.,
2014), such GMPEs need to be adjusted to be applicable for
the reference site condition to define the input motions for a
site-specific site response analysis. Such adjustments made
to GMPEs are called host to target adjustments; a popular
framework in this context is the hybrid-empirical approach
(Campbell, 2003). The term “host” refers to the data-rich
region for which an original GMPE was derived and “target”
corresponds to the site/region for which the PSHA is to be
undertaken. In the hybrid-empirical approach the ratios of
stochastically simulated (Boore, 1983, 2003) response spec-
tral ordinates, that is, target response spectra/host response
spectra, are usually applied to the existing GMPEs (from the
data-rich host regions) to account for the regional differences
in the underlying seismological parameters. Such adjust-
ments are based upon the assumption that the regional differ-
ences that exist between the FAS of the ground motion for the
host and target are all and well captured by the corresponding
ratio of response spectral ordinates. However, this may not be
true over the entire range of oscillator frequencies (or peri-
ods) as shown later in this article.

In an attempt to bridge the gap between common engi-
neering practices and seismological understanding, the pre-
sent article is aimed at providing some guidance regarding
the relationship between the FAS and the response spectrum
of ground motion. The relationship between the two will be
discussed for response spectral ordinates of acceleration cor-
responding to a 5% damped SDOF oscillator. That is fol-
lowed by discussing the implications of this relationship for
the adjustment of response spectral GMPEs. We make use of
random vibration theory (RVT) to represent the response
spectrum in terms of the Fourier spectrum of ground motion.
The seminal work of Hanks and McGuire (1981) first used
RVT in engineering seismology to predict the peak ground
acceleration (PGA) through the use of the FAS of ground mo-
tion. Boore (1983, 2003) extended this theory to the stochas-
tic simulation method, an extensively used tool worldwide
for synthesizing ground motions for engineering applica-
tions. This simulation method is based upon the inherent
assumption that the high-frequency ground motions of engi-
neering interest are characterized by having a randomly dis-
tributed phase spectrum and an amplitude spectrum that is

defined by a simple analytical Fourier spectral model which
accounts for geometrical spreading, inelastic (Q) and κ0 re-
lated attenuation with respect to Brune’s source spectrum
(among other possible source spectra). The details of RVT, as
far as the present article is concerned, and the important
equations involved in the context of ground-motion simula-
tion are discussed in the following section. This is followed
by other relevant applications and validations of RVT in engi-
neering seismology and seismic-hazard studies. Subsequently,
we break the response spectrum obtained by RVT into its con-
stituent elements that we refer to as the “Building blocks of the
response spectrum”. We will use this concept to describe the
characteristics of the FAS of ground motion that influence the
response spectrum at a particular oscillator frequency. Finally,
the implications of the relationship between the FAS and the
response spectrum are discussed in the context of host-to-tar-
get adjustments in terms of source parameters, such asΔσ, and
attributes of the local site conditions, such as κ0 and the shear-
wave velocity (VS) profile.

Response Spectra from an RVT Perspective

The key feature of the RVT framework is that it relates
the peak value of the time-domain motion to the FAS repre-
sentation of the motion and its duration through Parseval’s
theorem and extreme value statistics. The first use of RVT in
engineering seismology goes back to the work of Hanks and
McGuire (1981) to predict the PGA from the root mean
square (rms) acceleration yrms. Parseval’s theorem is used to
compute yrms from the FAS, jYgm"f #j, of the ground-motion.
Hanks and McGuire (1981) related PGA to yrms using a peak
factor (PF) of Vanmarcke and Lai (1980), which is a function
of duration along with a measure of the predominant fre-
quency of the ground motion in question.

Boore (1983, 2003) extended this approach of comput-
ing PGA from the FAS of ground motion to the computation
of response spectral ordinates of an SDOF system in his sto-
chastic simulation method using a simple analytical model
for the FAS of ground motion. Boore used the PF of Cart-
wright and Longuet-Higgins (1956) to relate the response
spectral ordinate ymax of the SDOF oscillator corresponding
to the damping ratio ζ at an oscillator frequency fosc with the
yrms given as follows:

EQ-TARGET;temp:intralink-;df1;313;221

ymax"fosc; ζ#
yrms"fosc; ζ#

$
!!!
2

p Z ∞

0
f1 − %1 − ξ exp"−z2#&Negdz; "1#

in which the variable of integration z is a random variable
related to the ratio of the maximum to rms value in a station-
ary process with Ne extrema. The expression in equation (1)
is referred to as the PF, and within this expression,

EQ-TARGET;temp:intralink-;df2;313;131ξ"fosc; ζ# $
m2"fosc; ζ#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

m0"fosc; ζ#m4"fosc; ζ#
p ; "2#

is a measure of the bandwidth of the motion, and the number
of extrema Ne is given by
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EQ-TARGET;temp:intralink-;df3;55;733Ne"fosc; ζ# $
1

π

!!!!!!!!!!!!!!!!!!!!!!!
m4"fosc; ζ#
m2"fosc; ζ#

s

Dgm: "3#

Here,Dgm is the duration of the ground motion (Boore, 2003),
which is assumed to be the sum of a source duration (related to
the inverse of Brune’s corner frequency) and a path-dependent
duration. In equation (3), m0, m2, and m4 are the spectral mo-
ments of the oscillator response as defined in equation (4). It is
to be noted that in this context ymax and yrms are computed as
functions of oscillator frequency fosc. This is different from
the original formulation of Hanks and McGuire (1981)
and Vanmarcke and Lai (1980), who used observed FAS,
jYgm"f #j, values of the ground motion directly to compute
PGA. Therefore, in the computation of spectral moments, that
is, mk, in which k $ 0, 2, 4, the squared FAS of the SDOF
response, jYSDOF"f; fosc; ζ#j2 is used as follows:

EQ-TARGET;temp:intralink-;df4;55;535mk"fosc; ζ# $ 2

Z ∞

0
"2πf#kjYSDOF"f; fosc; ζ#j2df: "4#

In the above equation, jYSDOF"f; fosc; ζ#j2 is obtained by
multiplying jYgm"f #j2 with the squared SDOF transfer func-
tion jI"f; fosc; ζ#j2 as

EQ-TARGET;temp:intralink-;df5;55;452jYSDOF"f; fosc; ζ#j2 $ jYgm"f #j2jI"f; foscζ#j2…; "5#

in which the SDOF transfer function jI"f; fosc; ζ#j is defined
as in equation (6):

EQ-TARGET;temp:intralink-;df6;55;394jI"f; fosc; ζ#j $
f2osc!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

"f2 − f2osc#2 ' "2ffoscζ#2
p : "6#

The yrms in equation (1) is computed as

EQ-TARGET;temp:intralink-;df7;55;333yrms"fosc; ζ# $
"
m0"fosc; ζ#

Drms

#
1=2

: "7#

Drms is the rms duration that differs from the ground-motion
durationDgm according to the relationship described in equa-
tion (8). As already noted by Boore (2003), earthquake re-
cords cannot be considered stationary in the strict sense and
the response of the resonant systems (e.g., local soil layering
or the SDOF oscillators) to those motions might include sig-
nificant correlations between adjacent peaks. That means
that both of these characteristics discussed in the previous
sentence violate basic assumptions of the RVT framework dis-
cussed above. Notwithstanding this, Boore (2003) and some
other studies (such as Hanks and McGuire, 1981; Boore,
1983; Atkinson, 1984; Rathje and Ozbey, 2006) have shown
that RVT-based simulations of ground motion can capture
most of the characteristics of ground motions of engineering
interest. Based upon numerical experiments, Boore and Joyner
(1984), Liu and Pezeshk (1999), Boore (2003), and recently
Boore and Thompson (2012) suggested modifications to the
duration model for the computation of the yrms motion, to apply

this theory to the response motion of an SDOF system. There-
fore, a different measure of durationDrms is used in equation (7)
to compute the yrms using the Boore and Thompson (2012)
model to relate Drms to Dgm as in the following:

EQ-TARGET;temp:intralink-;df8;313;685

Drms

Dgm
$

"
c1 ' c2

1 − ηc3

1' ηc3

#$
1'

c4
2πζ

"
η

1' c5ηc6

#
c7
%
:

"8#

Here, η $ D0=Dgm, and D0 $ 1="2πfoscζ# is regarded as the
oscillator duration (Boore, 2003; Boore and Thompson, 2012).
Using simulated Drms=Dgm ratios, Boore and Thompson
(2012) suggest a set of regression coefficients, c1–c7 (in equa-
tion 8) for each magnitude–distance pair in the 4–8 magnitude
range at logarithmically spaced distances from 2 to 1262 km.

Validation of the RVT Method Seen in Previous
Studies

There has been a significant number of applications of
RVT in engineering seismology and in studies related to seis-
mic-hazard analysis. Pioneering efforts in this context are
those of McGuire and Hanks (1980), Hanks and McGuire
(1981), and McGuire et al. (1984). Hanks and McGuire
(1981) demonstrated that bandlimited white Gaussian noise
can be used to approximate, to a certain extent, the rms and
peak acceleration of 300 ground-acceleration records from
16 California earthquakes. The first validation of the RVT
method was done by McGuire et al. (1984) in which they
demonstrated that the RVT simulated spectral velocities
agreed well with the recorded data of the 1971 San Fernando
earthquake of magnitude Mw 6.6. Regardless of the fact that
earthquake ground motions cannot be considered as purely
stochastic, the work of Hanks and McGuire (1981) can be
considered a landmark, because it demonstrated that a seis-
mological source model can be coupled with RVT to obtain
the peak values of earthquake ground motion.

Boore (1983, 2003) extended and modified this approach
to predict response spectral ordinates of an SDOF system sub-
jected to earthquake ground motion as input. In his stochastic
simulation method, Boore compared the predictions from the
RVT method with those from time-domain simulations. The
time-domain simulations were based on the assumptions that
the engineering notion of ground motion is essentially related
to the high frequencies of a ground-motion spectrum and
hence warrants the use of random phase angles in conjunction
with a deterministic FAS for the ground motion. Boore showed
that the response spectral ordinates predicted by the RVT
method agreed well with the average values of time-domain
simulations, although a large number of time-domain simula-
tions are needed before stable statistics can be computed from
the time-domain maxima.

In addition, RVT has been used as an alternative approach to
time-domain site-response analysis (e.g., Schneider et al., 1991;
Stepp et al., 1991; Silva et al., 1997; Rathje and Ozbey, 2006).
The RVT-based site response analysis is essentially an extension
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of the stochastic ground-motion simulation method developed
to predict PGA and response spectral ordinates. Essentially, in
the RVT-based site response analysis the FAS at the base
of the soil column (or the rock FAS) is modified to account
for the soil response to obtain the response spectral ordinates
at the ground surface using RVT.

The Building Blocks of Response Spectra

To better understand the relationship between the Fou-
rier and response spectrum within the RVT framework, we
break the RVT obtained response spectrum into what we call
its building blocks. Judging from equations (1–8), these are
the spectral moments, the PF, that is, ymax=yrms (equation 1)
and the durationDgm. It is evident from equation (1) that ymax

is PF times the value of yrms and from equation (7) that yrms
depends upon the zeroth-spectral moment m0 and Drms.
However, Drms is also a function of Dgm as can be seen from
equation (8) and so we can refer to the oscillator-frequency
independent Dgm as being one of the building blocks. It
is worth emphasizing again that the computation of
ymax"fosc; ζ# utilizes the squared FAS of the SDOF oscillator,
that is, jYSDOF"f; fosc; ζ#j2 to compute the spectral moments.
Given that the present analysis discusses the case of 5%
damped (ζ $ 0:05) SDOF oscillator, a simple notation of
jI"f; fosc#j will be used for jI"f; fosc; ζ#j, unless a different

value of ζ is used. The same notation scheme shall apply to
other elements which are derived using jI"f; fosc; ζ#j. Addi-
tionally, throughout the following discussion our focus will
be upon the relationship between acceleration response spec-
tra and the FAS of acceleration.

Figure 1 depicts the response spectrum and the constitu-
ent spectral moments as well as the PF for a scenario earth-
quake ofMw 6 at distance RJB $ 20 km. The simulations are
performed at an equivalent rupture distance Rrup $ 23 km
obtained by converting RJB using the distance conversion re-
lation suggested by Scherbaum et al. (2004). Although the
FAS is normally prescribed in terms of the point-source met-
ric hypocentral distance, we use the rupture distance here to
approximate the effects of finite rupture. For computing the
FAS, that is, the jYgm"f #j, stochastic model parameters for
western North America (WNA) suggested by Campbell
(2003) are used. Figure 1a shows the variation of the three
spectral moments (m0,m2, andm4) with oscillator frequency
fosc; in Figure 1b the variation of the PF andD

1=2
rms with fosc is

depicted. Figure 1c shows the response spectra (i.e., ymax in
equation 1). Them1=2

0 "fosc# is included in Figure 1c to permit

the reader to appreciate the similarity betweenm1=2
0 "fosc# and

the response spectrum. In the same figure, the gray curve
depicts the response spectrum obtained from the empirical
model of Boore et al. (2014). The SDOF oscillator transfer

(a) (b)

(c) (d)

Figure 1. Building blocks of the response spectrum, ymax as used in random vibration theory (RVT). The stochastic model parameters for
western North America (table 2 in Campbell, 2003) are used for the simulations. (a) Variation of three spectral moments m0, m2, and m4

against oscillator frequency (fosc). (b) The same variation of the selected peak factor and D1=2
rms"fosc#. (c) The final response spectrum,

ymax"fosc# computed using RVT (black curve), response spectrum obtained by Boore et al. (2014) model and m1=2
0 . (d) Single degree

of freedom (SDOF) oscillator transfer function jI"f; fosc#j at different oscillator frequencies. The simulations are shown for the scenario
earthquake of Mw 6 at RJB $ 20 km. The color version of this figure is available only in the electronic edition.
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function (equation 6) is shown in Figure 1d. It can be readily
observed from Figure 1c that all the characteristics (in terms
of shape and values) of the response spectrum, that is,
ymax"fosc# are well captured in m1=2

0 "fosc#. This similarity of

shapes between ymax"fosc# and m1=2
0 "fosc# becomes more

clear if one rearranges the terms in equation (1) and (7) to
obtain ymax $ PF"m0=Drms#1=2. Figure 1b indicates that PF
and D1=2

rms are observed to show less variation with fosc as
compared to m1=2

0 "fosc# (keeping in mind the moment is
shown using a logarithmic ordinate). In other words, the dy-
namic range (ratio of maximum-to-minimum) of m1=2

0 "fosc#
in comparison to that of PF and D1=2

rms is larger and closer to
the dynamic range of the ymax"fosc#. This similarity facili-
tates one to use m1=2

0 "fosc# as a proxy for the corresponding
ymax"fosc# to understand the behavior of the latter in terms of
the FAS of ground motion jYgm"f #j. Therefore, in what fol-

lows m1=2
0 "fosc# will be used interchangeably for ymax"fosc#

(for the case of ζ $ 0:05) to relate it with the jYgm"f #j of
ground motion.

Before proceeding further, we would like to emphasize
that in investigating the relationship between the FAS and
response spectrum of an SDOF oscillator it is important to
keep in mind the difference between the oscillator frequency
represented by fosc and the signal frequency of the harmonic
components of the Fourier spectrum denoted by f. In
addition, the distinct difference between the FAS of the
ground-motion jYgm"f #j and that of SDOF response
jYSDOF"f; fosc#j should also be noted. The similarity between
m1=2

0 "fosc# and ymax"fosc# exhibited in Figure 1 makes

m1=2
0 "fosc# a useful quantity to understand the relationship

between FAS and response spectrum of ground motion.

Not only that, and as will be shown in the following discus-
sion, the zeroth-spectral moment of an acceleration response
signal is also a measure of the total power of acceleration
per unit mass contained in the response signal. Therefore,
it is useful to note the difference in the three different
measures of zeroth-spectral moment (m0), which will be
computed herein for the present analysis. As can be appre-
ciated from equation (4), m0 is computed as an integration
of jYSDOF"f; fosc; ζ#j2 over the full frequency range (f from
0 to infinity) leaving it a function of fosc and ζ, that is,
m0"fosc; ζ#. For a fixed fosc and ζ (0.05 in this study), a por-
tion of m0 can also be computed as a function of fint, that is,
m0"fint; fosc# in which fint is the upper limit of Fourier fre-
quency used in the integration in equation (4). The notion of
power “per unit mass” makes strict sense when referring to
these moments obtained from the oscillator response. How-
ever, we will also refer to power more generally hereafter for
moments computed from other signals. As shown in Fig-
ure 2a, m0gm"fint# can be computed using the m0-kernel
function jYgm"f #j2 corresponding to the FAS of the ground
motion without the oscillator transfer function as

EQ-TARGET;temp:intralink-;df9;313;219m0gm"fint# $ 2

Z
fint

0
jYgm"f #j2df: "9#

The m0gm"fint# can be regarded as representing the accumu-
lation of power (of acceleration) as a function of frequency in
the spectrum in which m0gm"fint# computed at fint = Nyquist
frequency of the signal, represents the total power contained
in the signal. The important difference to be noted hereafter
is that the m0"fosc# and m0"fint; fosc# use the m0 kernel
jYSDOF"f; fosc#j2 in their computation as described in equa-
tion (4), whereas m0gm"fint# uses the jYgm"f #j2 as its kernel
(see equation 9). However, m0gm"fint# and m0"fint; fosc# are

(a) (b)

Figure 2. Plot depicting the contribution of Fourier spectral amplitudes, jYgm"f #j to the response spectral amplitudes at low and high
oscillator frequencies. (a) Normalized zeroth-spectral moment m0gm as a function of frequency, fint that is computed as described in equa-
tion (9) using jYgm"f #j2. The vertical lines correspond to the source-corner frequency, fc, f2%, half-power points related fκ and fQ, and f98%.
(b) The square root of zeroth-spectral moment m1=2

0 "fosc# (thick solid black curve) is considered to represent all the chracterstics of the
response spectrum ymax"fosc# (see Fig. 1c). The gray curve represents jYgm"f #j corresponding to the input Fourier amplitude spectrum
(FAS) (without the SDOF response); and the dashed curve indicates the (square root of) integral of jYgm"f #j2, that is, m

1=2
0gm"fint#. The plots

are shown for magnitude Mw 6 at a distance RJB $ 20 km; and the same stochastic model parameters as used for Figure 1.
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conceptually connected by the fact that they are both related to
the building up of the integration in (9) and (4) as a function of
fint (upper frequency limit used in the integration), albeit for
the two different integrands, jYgm"f #j2 and jYSDOF"f; fosc#j2,
respectively. This property of m0"fint; fosc# will be used later
to indicate the dominant frequencies in jYSDOF"f; fosc#j2 that
control the finalm1=2

0 "fosc# at a particular oscillator frequency.
Two of the three measures of the square root of the zeroth-
spectral moment just discussed are plotted in Figure 2b that
includes m1=2

0 "fosc# as a function of fosc and m1=2
0gm"fint# as

a function of fint along with the square root of the m0 kernel
(jYgm"f #j) corresponding to the FAS of the ground motion.
Figure 2a shows normalized m0gm"fint# computed for input
FAS using jYgm"f #j2. It is worth noting here again, as can also
be appreciated from Figure 2b, that of the two measures of
m1=2

0 it is the m1=2
0 "fosc# that mimics the shape of a response

spectrum.
To facilitate a relative comparison between the FAS and

the response spectrum in terms of different frequency ranges,
we make use of certain frequency definitions. For example,
Brune’s source-corner frequency fc which is often defined to
characterize the low-frequency part of the observed FAS of
the ground motion (Brune, 1970). Similarly, we define the
corner frequencies fQ and fκ associated with the inelastic
attenuation (Q) and the high-frequency attenuation (κ0), respec-
tively. The fQ and fκ correspond to the frequencies at which the
squared response of the corresponding filters becomes 0.5. Thus,
by solving for those frequencies when assuming typical func-
tional representations of these filters within an FAS, the analyti-
cal expressions come out to be fQ $ "Q0β ln 2=2πR#%1="1−α#&

and fκ $ ln 2=2πκ0 for fQ and fκ, respectively. Here, β is
the average shear-wave velocity and α is the exponent related
with the frequency-dependent quality factor.

In addition, as shown in Figure 2a, two more frequencies
denoted by f2% and f98% indicating the frequencies corre-
sponding to the accumulation of 2% and 98% of the final
m0gm"fint# are defined. The selection of 2% and 98% level
is subjective and primarily motivated by a similar definition
of significant duration (in the time domain) as the time in-
terval between two selected levels of total Arias intensity
(Arias, 1970). Moreover, from Parseval’s theorem, the
frequencies f2% and f98% define a frequency range over
which 96% of the total Arias intensity is encapsulated.
For the scenario shown in Figure 2, the values of fc, fQ, fκ,
f2%, and f98% are 0.36, 7.5, 2.8, 0.61, and 15.8 Hz, respec-
tively. Essentially, these aforementioned frequencies parti-
tion the m1=2

0 "fosc#, and similarly the response spectrum
ymax"fosc#, into three different portions (Fig. 2b), one for
which fosc < fc or f2% where the m1=2

0 "fosc# decreases al-
most linearly with decreasing oscillator frequency, second
the bell-shaped curve for which f98% > fosc > fc or f2%
where m1=2

0 "fosc# increases as function of fosc and reaches
a maximum (the dotted line between fκ and fQ), and third

the region where it again decreases (from the maximum) with
fosc and finally becomes stable (the plateau) at fosc > f98%.
Therefore, the remainder of this section and Figures 2, 3, and
4 will be focused on examining what makes m1=2

0 "fosc#, and
hence ymax"fosc#, behave in this manner over these three dis-
tinct oscillator-frequency ranges.

We proceed to investigate the behavior of m1=2
0 "fosc#

from the high oscillator frequency, fosc side of the response
spectrum; the reason for this choice will become evident in
the following discussion, namely that m1=2

0 "fosc# at high os-
cillator frequencies is related to the integral of the squared
spectrum of ground motion, that is, jYgm"f #j2. Figure 2b de-
picts the contribution of jYgm"f #j2 to the computation of

m1=2
0 "fosc#. The dashed curve in Figure 2b depicts the total

signal strength, represented by m1=2
0gm"fint#, contained in the

input signal distributed in a frequency range from 0 to fint.
When fint becomes equal to the Nyquist frequency, the
m1=2

0gm"fint# will represent square root of the total power con-
tained in the signal. Hence, it can be easily observed from Fig-
ure 2b that them1=2

0 "fosc# at high oscillator frequencies, that is,
fosc > f98% (the plateau) matches with the m1=2

0gm"fint#. This
implies that the oscillator action jI"f; fosc#j2 has a minimal
effect on the ymax"fosc# at those fosc; in fact it is related to
the total signal power (integration over the jYgm"f #j2) con-
tained in the input ground motion. This observation is further
illustrated in Figure 3 and also in Figure 4. Figure 3 depicts the
m0-kernel functions jYgm"f #j2 and jYSDOF"f; fosc#j2 for the
input ground motion (dashed curve) and the SDOF response
(shaded curve), respectively. The shaded curve in Figure 3
represents the area spanned by jYSDOF"f; fosc#j2 (i.e.,
jYgm"f #j2jI"f; fosc#j2#, which is effectively being used by
the integral in equation (4) to compute the m0"fosc# at a par-
ticular oscillator frequency fosc. Figure 4 depicts the effect of
the SDOF oscillator jI"f; fosc#j within m1=2

0 "fosc# at low
(Fig. 4a) and high (Fig. 4b) oscillator frequencies (plotted
using logarithmic ordinates). As can be observed in Fig-
ure 4a, at oscillator frequencies fQ > fosc ≥ f2% mainly the
peaky part (i.e., at f $ fosc) (square root) of the moment ker-
nel jYSDOF"f; fosc#j is controlling the m1=2

0 "fosc# at a given
oscillator frequency. Moreover, at oscillator frequencies
lower than f2%, frequencies other than fosc also contribute
to m1=2

0 "fosc#, but with rapidly decaying amplitudes because
jI"f; fosc#j filters frequencies beyond fosc significantly. On
the other hand, at high oscillator frequencies fosc > fQ a
wide band jYSDOF"f; fosc#j, that ultimately mimics the shape
of jYgm"f #j at very high oscillator frequencies controls

m1=2
0 "fosc# (Fig. 4b). Observations from Figures 3 and 4

can be summarized in the three following points correspond-
ing to the three different oscillator-frequency ranges.

1. At high oscillator frequencies (panels corresponding to
fosc ≥ 20 Hz in Fig. 3), with increasing oscillator fre-
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(a) (b)

Figure 4. Plots depicting the SDOF oscillator effect jI"f; fosc#j at (a) low and (b) high oscillator frequencies, that is, fosc < fc and
fosc > f98%, respectively. The vertical lines correspond to the source-corner frequency, fc, f2%, half-power points related fκ and fQ,
and f98%. The dotted vertical line (between fκ and fQ) corresponds to the frequency related with the peak of the ymax"fosc# (5 Hz in this
case). The color version of this figure is available only in the electronic edition.

Figure 3. Plots depicting the relative contribution ofm0-kernels jYSDOF"f; fosc#j2 and jYgm"f #j2 in the square root of the zeroth-spectral
moment m0"fosc#. The shaded curve indicates the jYSDOF"f; fosc#j2 at different oscillator frequencies fosc. The dashed curve represents
jYgm"f #j2, that is, corresponding to the input ground motion. The plots are shown (with linear vertical axis) for magnitudeMw 6 at a distance
RJB $ 20 km; and the same stochastic model parameters as used for Figure 1. The color version of this figure is available only in the
electronic edition.
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quency the m0 kernel jYSDOF"f; fosc#j2 is dominated by
contributions at frequencies well below fosc. Ultimately,
for fosc > f98% the shape of jYSDOF"f; fosc#j2 matches
that of jYgm"f #j2 making the former a spectrum distrib-
uted over a broad range of frequencies similar to the lat-
ter. It implies, m1=2

0 "fosc# is entirely dominated by
jYgm"f #j2 regardless of oscillator frequency which con-

sequently makes the m1=2
0 "fosc# curve plateau out and to

become independent of oscillator frequency (as can also
be observed in Fig. 4b).

2. In the middle oscillator-frequency range, that is,
f98% > fosc > fc or f2% (panels in Fig. 3 corresponding
to fosc $ 0:33–10 Hz), the m0-kernel function
jYSDOF"f; fosc#j2 becomes a peaky curve localized at
frequencies around fosc; and this peaky part of
jYSDOF"f; fosc#j2 controls the computation of m1=2

0 "fosc#
at these oscillator frequencies. Essentially, at fosc below
the peak of response spectrum (5 Hz in this example) the
m1=2

0 "fosc# is determined by a peaky jYSDOF"f; fosc#j2

which is mostly localized around the resonance peak
of jI"f; fosc#j2 at f $ fosc.

3. At low oscillator frequencies (the panel corresponding
to fosc $ 0:1 Hz) it is again the peaky part of
jYSDOF"f; fosc#j2 that contributes to the computation of
m1=2

0 "fosc# at a particular oscillator frequency, but as
can be observed from first panel (fosc $ 0:1 Hz) in Fig-
ure 3 that the shaded jYSDOF"f; fosc#j2 curve becomes sig-
nificantly smaller than the jYgm"f #j2 dashed curve. This

can be better observed in Figure 4a that m1=2
0 "fosc#, at

fosc < fc or f2%, is mainly dominated by the resonant
peak of jI"f; fosc#j with some additional contributions
from rapidly diminishing amplitudes at f > fosc as well.
However, due to the lower amplitudes of jYgm"f #j at those
frequencies and clipping-off of high-frequency amplitudes
because of the oscillator action, the integration in equa-
tion (4) effectively gives a lower m1=2

0 "fosc# at those oscil-
lator frequencies.

The higher m1=2
0 "fosc# in the oscillator-frequency range

f98% > fosc > fc than at fosc > f98% indicates that the os-
cillator action jI"f; fosc#j2 adds extra power to the existing
total power (e.g., m0gm) of the input ground motion. Figure 5
depicts the time histories corresponding to the ground-mo-
tion jYgm"f #j and oscillator response jYSDOF"f; fosc#j at dif-
ferent oscillator frequencies. The top-left panel depicts the
FAS, jYgm"f #j, for the earthquake of magnitude Mw 6 at
a distance RJB $ 20 km, the stochastic model parameters re-
main the same as those used in Figure 1.

The filled circles on the jYgm"f #j curve in this panel in-
dicate the oscillator frequencies at which the time series re-
sponse of the oscillator is computed using the time-domain
stochastic simulation method of Boore (2003). The top-right
panel in the same figure depicts the response spectra com-

puted using the time-domain simulation, and the predictions
obtained from the empirical model of Boore et al. (2014) are
added to demonstrate the consistency of the simulations. It
can be easily observed from the panels (bottom eight) show-
ing the time histories that at fosc < f2% (0.6 Hz) the oscil-
lator generates a time history with the lower amplitude
indicating a lower power content present in the signal given
that the oscillator-response duration is similar to the ground-
motion duration. At fosc $ 2, 5, and 10 Hz corresponding to
the fosc range between f2% (0.61 Hz) and f98% (15.8 Hz), it
can be observed that oscillator response generates time his-
tories with amplitudes significantly larger than that of the
ground motion, this indicates an increase in the signal power
due to the oscillator action jI"f; fosc#j on the ground-motion
jYgm"f #j. It can also be observed that at oscillator-frequen-
cies fosc ≥ 20 Hz the oscillator response time histories ap-
proach the amplitude and shape of input of ground
motion which relates to the plateau part of the response spec-
trum at oscillator frequencies beyond f98%.

The discussion regarding the relationship of FAS and re-
sponse spectrum in the different oscillator-frequency ranges
can be summarized with the help of Figures 6 and 7. In Fig-
ures 6 and 7, the simulations are performed for magnitude
Mw 6 at a distance RJB $ 20 km; and the stochastic model
parameters remain the same as those used for Figure 1. Fig-
ure 6 depicts the contribution of different parts of the m0 ker-
nel jYSDOF"f; fosc#j2 in the computation of m1=2

0 "fosc# at a
selected oscillator frequency fosc. It was observed in Figure 3
that below the peak of the m0"fosc# the squared SDOF trans-
fer function amplitude, jI"f; fosc#j2 exerts a strong influence
on the computation of m1=2

0 "fosc# at a particular fosc. The
squared amplitude of SDOF transfer function, jI"f; fosc#j2

that multiplies with jYgm"f #j2 to produce jYSDOF"f; fosc#j2

can be thought of as being composed of a smooth part
and a peaky part that represents the resonance peak of
jI"f; fosc#j2. To have a better insight about how each part
of jI"f; fosc#j2 influences the computation of m1=2

0 "fosc# at
a single oscillator frequency fosc, we approximate the smooth
part of jI"f; fosc#j2 as jI"f; fosc; ζ $ 1=

p
2#j2, that is,

jI"f; fosc#j2 computed for 70.7% damping as depicted in
the Figure 6a. Figure 6b depicts the moment kernels
jYSDOF"f; fosc#j2 for the two jI"f; fosc#j2 functions (for ζ $
0:05 and 1=

p
2) at a selected fosc $ 15 Hz. The Figure 6c

depicts the m1=2
0 "fosc# and m1=2

0 "fosc; ζ $ 1=
p
2# along with

the m1=2
0gm"fint# computed from jYgm"f #j2. At each fosc, after

subtracting the m1=2
0 "fosc; ζ $ 1=

p
2# from m1=2

0 "fosc# what
remains is the m1=2

0 "fosc# contribution that arises from the
resonance peak of jI"f; fosc#j2 as represented by the heavy
dotted dashed curve in Figure 6c. It can be observed from
Figure 6c that m1=2

0 "fosc# at high oscillator frequencies, that
is, fosc > f98% (the plateau) is dominated by the smooth part,
which ultimately matches with the m1=2

0gm"fint# and the con-
tribution of resonance peak (heavy dotted dashed curve) de-
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Figure 5. Plots depicting the effect of oscillator response on the input ground motion jYgm"f #j in terms of the corresponding time
histories of oscillator response jYSDOF"f; fosc#j. The top-left panel shows the FAS of ground motion, that is, jYgm"f #j, the dark filled circles
on the jYgm"f #j curve indicate the oscillator frequencies at which the time histories for the oscillator response (total acceleration response) are
shown in the bottom eight panels. Top-right panel shows the response spectrum obtained from time-series simulation and that from the
empirical model of Boore et al. (2014). The response spectral ordinates from the time series are computed as the geometric mean over
50 simulations. The color version of this figure is available only in the electronic edition.
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creases. As m1=2
0 "fosc; ζ $ 1=

p
2# also matches with

m1=2
0gm"fint#, this implies that the entire (smooth as well as peak)

oscillator action jI"f; fosc#j2 has a minimal effect on the
m1=2

0 "fosc# and it is the m1=2
0gm"fint# (computed for jYgm"f #j)

that determines the m1=2
0 "fosc# at those oscillator frequencies.

However, at low oscillator frequencies, below the peak
(dotted vertical line) of them1=2

0 "fosc# the contribution which
is coming from the resonance peak of the jI"f; fosc#j2 (heavy
dotted dashed curve) matches with the m1=2

0 "fosc# indicating
that m0 at these oscillator frequencies is mainly determined
by the peaky part of jI"f; fosc#j2. Moreover, using a hypo-
thetical peaky part of jI"f; fosc#j2 Figure 7 illustrates that the
contribution of the peaky part of jI"f; fosc#j2 over the entire
oscillator-frequency range mimics the shape of FAS implying
that below the peak of m1=2

0 "fosc#, the behavior of the FAS
and response spectrum of ground motion with respect to seis-
mological parameters can be considered as equivalent. In
Figure 7a, the resonance peak of jI"f; fosc#j2 is approximated
by a simple rectangle whose width depends upon the
half-power width of the resonance peak. The fractional half-
power width (fd $ 0:057) of the resonance peak was com-
puted as a fraction of fosc that corresponds to the frequency
at which jI"f; fosc#j2 becomes 1/2 times the peak. For the
rectangular approximation of the peak, the fractional width
of fd was observed to be giving an underestimation of
the actual m1=2

0 "fosc#. Thus, twice of fd was chosen to be the
fractional width of the rectangular approximation of the
peaky part of jI"f; fosc#j2. Essentially for a selected oscillator
frequency, "1 − 2fd#fosc and "1' 2fd#fosc represent the
boundaries of the rectangular peak (shown in Fig. 7a) on ei-
ther side of the corresponding resonant peak of jI"f; fosc#j2.
Figure 7b shows the three jI"f; fosc; ζ#j2 functions, that is,
full, smooth, and approximated, to be used to compute
jY"f; fosc; ζ#j2 (in Fig. 7c) and the corresponding m1=2

0 "fosc#
in Figure 7d. It is worth noting in Figure 7b that the approxi-

mated squared amplitude of the transfer function (heavy
dashed curve) is obtained as a multiplication of the smooth
part (dashed curve) and the rectangular peak (heavy dotted
dashed) shown in Figure 7a. The heavy dotted dashed curve
in Figure 7d indicates the contribution, of the rectangular
peaky part in the approximated m1=2

0 "fosc# computed as men-

tioned in Figure 6. Additionally, m1=2
0gm"fint# is also plotted in

the same figure. Similar to our previous observation in Figure 6
it is evident from Figure 7d that at high fosc, the m1=2

0gm"fint#
corresponding to the total power in the signal determines the
m1=2

0 "fosc# at a particular fosc. Below the peak of m1=2
0 "fosc#,

the rectangular peaky part determines them1=2
0 "fosc# and more

importantly this heavy dotted dashed curve mimics the shape
of the FAS of ground motion. This implies, below the peak of
the response spectrum the response spectral scaling can be
treated as if they are Fourier spectral ordinates. However, to-
ward higher fosc the full FAS contribution to the determination
of a response spectral ordinate is observed. It is worth empha-
sizing here that Figures 6 and 7 are presented to facilitate a
better insight regarding the effect of different parts of
jI"f; fosc#j2 that contribute to the computation of m1=2

0 "fosc#
at a selected fosc. These figures utilize the mathematical ap-
proximations for the smooth and peaky part of squared SDOF
transfer function jI"f; fosc#j2, and good comparison with the
full transfer function enables one to appreciate that these ap-
proximations capture the essential features of the problem.
However, we are not suggesting that these approximations
be used for real applications.

Considering that we have previously shown that the
shape of m1=2

0 "fosc# is very similar to that of ymax"fosc#, the
findings regarding the relationship between m1=2

0 "fosc# and
the FAS of the ground motion jYgm"f #j can also be taken
to represent the relationship between the Fourier jYgm"f #j
and response ymax"fosc# spectra. Therefore, this entire discus-
sion implies that the analogy that is often made between the

(a) (b) (c)

Figure 6. Plots depicting the contribution of smooth and peaky part of the SDOF transfer function (squared amplitude), jI"f; fosc#j2 in the
computation of (square root) zeroth-spectral moment m1=2

0 "fosc#. (a) The full jI"f; fosc#j2 along with the assumed smooth part of it, that is,
jI"f; fosc; ζ $ 1=

p
2#j2. (b) The zeroth-moment (m0) kernels corresponding to the two transfer functions. (c) The m1=2

0 "fosc; ζ# for the two
transfer functions along with the m1=2

0gm"fint# and the contribution in m1=2
0 "fosc# that comes from the peaky part of jI"f; fosc; ζ#j2. The con-

tribution of the peaky part (heavy dotted dashed curve) is computed as m1=2
0 "fosc; ζ $ 0:05# −m1=2

0 "fosc; ζ $ 1=
p
2#. The color version of

this figure is available only in the electronic edition.
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Fourier and response spectral ordinates is only valid over a
limited range of oscillator frequencies. In fact, at high fosc
the relationship between the two appears in contrast to the
commonly held perception within earthquake engineering
that the PGA and other short-period spectral ordinates are
high-frequency measures of the ground motion. The analysis
just presented using RVT reveals that PGA and other response
spectral ordinates at fosc > 30 Hz are related to the entire
spectrum of the ground motion. In fact, beyond the highest
frequency from which the jYgm"f #j decreases the relative
contribution of high (Fourier) frequencies decreases with in-
creasing fosc. Essentially, the response spectral ordinate at a
selected oscillator frequency depends upon, (1) whether the
resonance peak or the smooth part of jI"f; fosc#j2 controls
the m1=2

0 "fosc# and (2) the position of resonance peak relative
to the shape of ground motion FAS, that is, jYgm"f #j. As can
be seen from Figures 6 and 7, at low oscillator frequencies
the resonance peak controls the m1=2

0 "fosc# whereas at high
oscillator frequencies it is the smooth part which controls the
m1=2

0 "fosc# that ultimately matches with m1=2
0gm at very high

oscillator frequencies. The effect of the position of the res-
onance peak is demonstrated in terms of the location of the
oscillator frequency fosc relative to the positions of fc, fκ,
fQ, or f2% and f98%. The frequencies are related with the

stochastic model parameters Δσ,Q, and κ0; and these param-
eters are often used to characterize the shape of the observed
FAS. The frequencies f2% and f98% can also be thought of as
being related to these parameters as they are related with the
accumulation of total power contained in the observed FAS.
This implies that a change in Δσ, Q, or κ0 will cause the
ymax"fosc# to behave differently at different oscillator
frequencies relative to the changed fc, fκ, fQ, or f2% and
f98%. Moreover, a change in the shape of jYgm"f #j relative
to the position of an oscillator frequency fosc will also de-
termine whether the resonance peak or smooth part of
jI"f; fosc#j2 controls the m1=2

0 "fosc# at that oscillator fre-
quency. That is, the response spectral ordinates will not
change in the same way over the entire oscillator-frequency
range for a corresponding change in seismological parame-
ters. As mentioned in the Introduction, the ratio of response
spectral ordinates (Campbell, 2003) will not necessarily cap-
ture the corresponding difference in the FAS of the ground
motion. Hence, in what follows we will explore the conse-
quences of the just discussed relationship (similarities and
differences) between the FAS jYgm"f #j and the response
spectrum ymax"fosc# for the adjustment of GMPEs corre-
sponding to changes in the stress parameter Δσ and the case
of site condition adjustment in terms of κ0 and site amplifi-
cation. The site-term adjustment in GMPEs has become

(a) (b)

(c) (d)

Figure 7. Plots depicting the contribution of smooth and peaky part of the SDOF transfer function (squared amplitude), jI"f; fosc#j2 in
which the peaky part of jI"f; fosc#j2 is approximated as a rectangle (a). The width, as a fraction of the oscillator frequency (fosc), of the
rectangular peak depends upon the half-power width of the jI"f; fosc#j2. (b) The full jI"f; fosc#j2, smooth part of it, jI"f; fosc; ζ $ 1=

p
2#j2

and the approximated squared amplitude of the transfer function (heavy dashed curve). (c) The zeroth-moment (m0) kernels for the three
transfer functions. (d) m1=2

0 "fosc; ζ# for the three transfer functions along with the m1=2
0gm"fint# and the contribution of the rectangular peak

(heavy dotted dashed curve). The color version of this figure is available only in the electronic edition.
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increasingly important in the context of site-specific seismic-
hazard analysis (see e.g., Bommer et al., 2014).

Implications for Δσ Adjustment

The stress parameterΔσ is a key parameter in the current
practice of ground-motion simulation using the stochastic
method as it determines the strength of the high-frequency
Fourier spectral amplitude (Atkinson and Beresnev, 1997).
Overall, the median value of the Δσ distribution in a particu-
lar region has often been assumed to be constant, though
some studies indicate an increase in Δσ with increasing mag-
nitude, over a limited range of magnitudes typically below
M 4.5. It is also known that there can be significant regional
differences in the value of the median stress parameter. For
example, recently Yenier and Atkinson (2015) have found that
earthquakes in eastern North America (ENA) attain higher
stress parameter values than those in WNA by an average fac-
tor of 3. In the context of (median) GMPE adjustment, we in-
vestigate the impact of changes in Δσ on response spectrum,
ymax"fosc# vis-à-vis the FAS of ground motion. This exercise is
depicted in Figure 8 in which panel (a) shows the response
spectra obtained from the model of Boore et al. (2014) and
from the stochastic simulations for two values of Δσ. In the
context of GMPE adjustment, the values of 10 and 1 MPa
could be considered as the host and target values of Δσ, re-
spectively. Therefore, for the present analysis the stochastic
model parameters remain the same as those used in Figures 1–
3, that is, for WNA (Campbell, 2003) except for the difference
in host and target Δσ values. Figure 8b depicts the FAS of
ground motion, that is, jYgm"f #j corresponding to the two
Δσ values. Figure 8c shows the ratios of FAS and response
spectra, for host and target values of Δσ, computed as
jYgm;10 MPa "f #j=jYgm;1 MPa "f #j and ymax;10 MPa"f; fosc#=
ymax;1 MPa"f; fosc#, respectively. This plot clearly shows that
at fosc < fc1 the ratios of stochastically simulated response
spectral ordinates are significantly different from the ratios of

FAS of the ground motion corresponding to the two values of
Δσ. In the frequency range fc1–1 Hz, the two ratios are almost
identical. At high oscillator frequencies (fosc > 1 Hz) the FAS
and response spectral ratios again become significantly differ-
ent. The differences particularly at high oscillator frequencies
cannot be ignored in the adjustment of a GMPE as it can in-
troduce additional epistemic uncertainty through the adjust-
ment process.

The effect of the Δσ adjustment on the response spectral
ordinates can be understood by making use of the similarity
between ymax"fosc# and m1=2

0 "fosc#. This analysis is demon-
strated in Figure 9 that depicts the jYSDOF"f; fosc#j2 and the
previously defined (see The Building Blocks of Response
Spectra section) m0"fint; fosc# computed at different oscilla-
tor frequencies fosc corresponding to the two Δσ values. The
plots in Figure 9 are shown for magnitudeMw 6 at a distance
RJB $ 20 km and except for the two different values for Δσ
the stochastic model parameters remain the same as those
used in Figure 1.

Figure 9 shows the relative contribution of jI"f; fosc#j2

in the computation of m1=2
0 "fosc# for two host and target

stress parameter (Δσ) values 10 and 1 MPa, respectively.
In addition to m0"fosc# and m0gm"fint# used previously, here
we make use of the third measure ofm0, that is,m0"fint; fosc#
computed at a particular fosc as a function of fint. The first
and third columns in Figure 9 depict jYSDOF"f; fosc#j2 at a
particular fosc whereas the second and fourth columns show
normalized m0"fint; fosc# at that fosc. The plot of normalized
m0"fint; fosc# against frequency fint computed at a particular
fosc provides information about the signal frequency range in
jYSDOF"f; fosc#j2 that controls the computation of m1=2

0 "fosc#
at that fosc. This frequency range is determined by the use of
2% and 98% limits (in the spectrum) of the final value of
m0"fint; fosc# as described in the previous section. The differ-
ence between the host and target m1=2

0 "fosc# becomes evident
from the m0"fint; fosc# panel that correspond to fosc < fc1,

(a) (b) (c)

Figure 8. Plots depicting the effect of an adjustment made in the stress parameter Δσ and its impact on response spectrum, ymax"fosc#
juxtaposed to the FAS, jYgm"f #j of ground motion. (a) The response spectral ordinates obtained by Boore et al. (2014) model along with those
obtained by stochastic simulations for Δσ values 10 (host) and 1(target) MPa. (b) Simulated FAS, jYgm"f #j for the two Δσ values. (c) The
ratios as ymax;10 MPa"fosc#=ymax;1 MPa"fosc# and jYgm;10 MPa "f #j=jYgm;1 MPa "f #j for response spectral ordinates and FAS, respectively. To
make the difference more visible between the two ratios, the reciprocal of target amplitudes/host amplitudes is plotted here. The two vertical
lines indicate the source-corner frequency fc10 $ 0:36 and fc1 $ 0:16 Hz for Δσ $ 10 MPa (dashed) and Δσ $ 1 MPa (dotted-dashed),
respectively, along with the vertical lines (solid) for f2% and f98%. The dotted vertical line corresponds to the frequency related with the peak
of the ymax"fosc# (5 Hz in this case).
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that is, fosc $ 0:05 Hz. These plots indicate that the
m1=2

0 "fosc# at fosc < fc corresponding to 1 MPa is dominated
by a relatively short frequency band in comparison (higher
frequencies contributing less, note the gray vertical lines)
with that corresponding to 10 MPa (dark vertical lines). This
makes the ratio of m1=2

0 "fosc# and therefore of ymax at those
fosc to be different than that of jYgm"f #j computed at
f $ fosc. As can be observed from the m0"fint; fosc#, plots
corresponding to fosc 0.5 and 2 Hz, the m1=2

0 "fosc# is domi-
nated by almost the same frequency range (for both the val-
ues of Δσ) that is mainly coming from the frequencies
around the resonance peak fosc. This corresponds to the os-
cillator-frequency range in Figure 8 where the FAS and re-
sponse spectral ratios are nearly identical. This smaller
mismatch between FAS and response spectral ratios can
be better appreciated if the peaky part of jI"f; fosc#j2 is re-
garded as a Dirac delta function δ"x# and the following prop-
erty of this function is employed,

EQ-TARGET;temp:intralink-;df10;55;136

Z ∞

−∞
f"x#δ"x − a# $ f"a#: "10#

If one relates the functions f"x# and δ"x!a# from the above
equation with jYgm"f #j2 and jI"f; fosc#j2 and variables x and

a with f and fosc, respectively, in equations (4) and (5). The
m0"fosc# essentially becomes jYgm"fosc#j2 (see equations 4
and 5). The analogy of resonance peak (of jI"f; fosc#j2) with
δ"x# is purely mathematical and is only used here to better
illustrate the role of the former in computing m0"fosc# at low
oscillator frequencies. Nevertheless, this analogy should be
considered valid whenever the ratio of two response spectra
is identical to that of the corresponding Fourier spectra at a
selected oscillator frequency. On the other hand, the signifi-
cant difference in FAS and response spectral ratios at very
low (fosc < fc1 in Fig. 8c) and at high oscillator frequencies
(see panels corresponding to fosc $ 10, 30, and 100 Hz in
Fig. 9) can be attributed to the differences in the controlling
frequency bands (in respectivem1=2

0 "fosc#). It can be observed
from panels (in Fig. 9) corresponding to fosc > 1 Hz the f98%
are identical, but different f2% limits for the twom0"fint; fosc#
indicate that for 1 MPa the contribution from low frequencies
is larger in m1=2

0 "fosc# than for 10 MPa; this difference ac-
counts for the mismatch between the FAS and response spec-
tral ratios at fosc > 1 Hz observed in Figure 8. It is also
interesting to note that in the panel showing m0"fint; fosc#
within Figure 9 corresponding to fosc $ 100 Hz, the
m1=2

0 "fosc# is mainly controlled by different (wide) bands
of frequencies other than the resonance peak (note the

Figure 9. Plots depicting the relative contribution of signal power and oscillator response in the computation ofm0"fosc# for two host and
target stress parameter (Δσ) values 10 and 1 MPa (in two different shades), respectively. The first and third columns plot the m0 kernel
jYSDOF"f; fosc#j2 at different oscillator frequencies (fosc), whereas the second and fourth column depict normalized m0"fint; fosc# computed
at the same fosc. The vertical lines indicate f2% and f98% frequencies corresponding to the 2% and 98% values of the final m0"fint; fosc# for
the two Δσ values 10 MPa (dark solid) and 1 MPa (light solid). The dashed vertical line represents the oscillator frequency fosc at which the
m1=2

0 "fosc# is computed. The color version of this figure is available only in the electronic edition.
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position of fosc, i.e., dashed vertical line). Essentially, the two
ratios will be different whenever the dominating contribution
in m0"fosc# will be coming from a band of frequencies be-
cause Fourier spectral amplitudes can be different over that
frequency band for two different sets of seismological param-
eters. As can be seen from Figure 8b, in this case the FAS
amplitudes are different at frequencies beyond fc1.

Implications for VS!κ0 Adjustment

Usually, GMPEs are derived from a database of earth-
quake records involving recordings from different sites.
Therefore, the average deviation of ground motions at a par-
ticular site with respect to the predictions from a GMPE is
referred to as the site term representing the site-specific site
effects. In the context of site-specific PSHA (Bommer et al.,
2014; Rodriguez-Marek et al., 2014), the hazard curves cor-
responding to the reference rock are convolved with the site-
response effects and associated uncertainties to generate haz-
ard curves at the final target velocity horizon at which the
ground motions are required (Bazzurro and Cornell, 2004).
In addition to that, it is also important in site-specific PSHA
to account for the deep shear-wave velocity (VS) structure
and the site attenuation parameter (κ0) related to the site in
question. To capture the differences in the VS structure and κ0
with respect to a host site, GMPEs are often adjusted to the
target site conditions by performing what are referred to as
VS!κ adjustments. Such adjustments are performed using
the velocity profiles and κ values (Cotton et al., 2006) for the
host and target regions, in which kappa represents the whole
path attenuation combining the effects of Q and site kappa
κ0. However, in the current article the discussion will be fo-
cused on VS and κ0 adjustments, hence it can be regarded as
VS!κ0 adjustment. As stated in the Introduction, one of the
popular frameworks to perform such adjustments is the use
of stochastically simulated response spectral ratios suggested
by Campbell (2003).

Therefore, in this section we discuss the implications of
the just discussed distinctions and similarities between
jYgm"f #j and ymax"fosc# for VS!κ0 adjustments; in which
the two components, that is, VS and κ0 will be discussed sep-
arately. The adjustment related with the difference in κ0 val-
ues is discussed first followed by a VS profile adjustment.
Similar to the analysis presented in the previous section, Fig-
ure 10a depicts the response spectral ordinates from Boore
et al. (2014) and those from RVT simulations corresponding
to κ0 0.04 and 0.006 s representing the host and target values,
respectively, in the context of GMPE adjustment. Other than
the difference in κ0 values, the host and target model param-
eters are assumed to be the same corresponding to the
WNA model of Campbell (2003). Figure 10b shows the
FAS, that is, jYgm"f #j of ground motion corresponding to
the two κ0 values. Figure 10c depicts the ratio of FAS, that
is, jYgm;0:006 s"f #j=jYgm;0:04 s "f #j and that of stochastically
simulated (using RVT) response spectral ordinates, that is,
jymax;0:006 s"fosc#j=jymax;0:04 s"fosc#j. The ratios plotted in
Figure 10c indicate that the response spectral ratios at os-
cillator frequencies, fosc < fQ (7.5 Hz) are able to capture
the corresponding relative difference in the FAS; but at
fosc > fQ (of host) the FAS and response spectral ratios
are completely different.

Similar to the plots shown in Figure 9, Figure 11 depicts
the plots of m0-kernel function jYSDOF"f; fosc#j2 in the first
and third columns whereas the second and fourth column
depict the normalized m0"fint; fosc# at different fosc. It can
be observed that at fosc below the peak of the ymax"fosc#
which is 5 Hz in this case the jYSDOF"f; fosc#j2 becomes
strongly localized around the fosc due to the resonant peak
of jI"f; fosc#j2 for both the κ0 values. It can also be noted
from the m0"fint; fosc# panels in the top row of Figure 11
that m1=2

0 "fosc# is mainly contributed to by the same band
of frequencies for both κ0 values and that these are concen-
trated around the resonance peak of jI"f; fosc#j2. As noted

(a) (b) (c)

Figure 10. Plots depicting the effect of an adjustment made in the site related attenuation parameter, κ0 on FAS, jYgm"f #j and its impact
on the response spectrum, ymax"fosc#. (a) The response spectral ordinates obtained from the model of Boore et al. (2014) along with those
obtained from stochastic simulations for κ0 values 0.04 (host) and 0.006 (target) (s). (b) Simulated FAS, jYgm"f #j for the two κ0 values.
(c) The ratios as ymax;0:006 s"fosc#=ymax;0:04 s"fosc# and jYgm;0:006 s"f #j=jYgm;0:04 s"f #j for response spectral ordinates and FAS respectively. The
vertical lines indicate source-corner frequency fc (dotted dashed), κ0 related corner frequency fκ (dashed gray), and Q related corner fre-
quency fQ (gray dotted dashed), f2% and f98% (solid-black). The dotted vertical line between fκ and fQ corresponds to the frequency related
with the peak of the ymax"fosc# (5 Hz in this case).
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earlier, the localization of jYSDOF"f; fosc#j2 around a single
frequency f $ fosc makes the ratios of FAS and response
spectral ordinates look identical. At fosc > fQ (7.5 Hz) a
wider spectrum of jYSDOF"f; fosc#j2 takes over in comparison
to the localized resonance peak in the computation of
m1=2

0 "fosc#. With increasing fosc the width of the significant
frequency range, that is, f2% to f98% increases differently for
the two κ0 values. For example, at fosc $ 30 Hz the m0 cor-
responding to the host κ0 $ 0:04 s is dominated by a signifi-
cantly wider band of frequencies; whereas for κ0 $ 0:006 s a
significant contribution of the resonance peak exists. In ef-
fect, at fosc > fQ (7.5 Hz) them1=2

0 "fosc# is dominated by the
different frequency ranges corresponding to the two different
κ0 values, as opposed to the case of fosc < 3 Hz where the
peaky part of jYSDOF"f; fosc#j2 at a single fosc dominates the
m1=2

0 "fosc#.
Similar to the cases shown in Figures 8 and 10, Figure 12

depicts the case of VS profile adjustment, in which Figure 12a
shows the response spectral ordinates obtained from the
empirical model of Boore et al. (2014) along with those ob-
tained from the stochastic (RVT) simulations corresponding
to the host and target VS profiles. Figure 12b shows the FAS
of ground motion, that is, jYgm"f #j corresponding to the two

VS profiles. In the context of GMPE adjustment, we assume
that the host profile corresponds to one appropriate for WNA
whereas the target profile is representative for ENA. The spe-
cific profiles are generically characterized by VS30 values of
620 and 2800 m=s, respectively. The amplification corre-
sponding to the two velocity profiles is computed using the
quarter-wavelength method (Joyner et al., 1981; Boore and
Joyner, 1997). Figure 12c depicts the ratios of FAS and re-
sponse spectral ordinates computed as jYgm;2800 m=s "f #j=
jYgm;620 m=s "f #j and jymax;2800 m=s"fosc#j=jymax;620 m=s"fosc#j,
respectively. It can be observed from the ratio plots in Fig-
ure 12c that at fosc beyond the peak of the response spectrum
(dotted line) the ratio of FAS differs significantly from that of
response spectral ordinates.

This difference in ratios can be better explored with the
help of Figure 13. Similar to Figures 9 and 11, Figure 13
depicts the m0-kernel functions jYSDOF"f; fosc#j2 in the first
and third columns whereas the second and fouth columns
depict the normalized m0"fint; fosc# at a selected fosc. It is
evident that at fosc < 5 Hz (peak of the response spectrum)
the jYSDOF"f; fosc#j2 is concentrated around the resonant
peak (f $ fosc) of the oscillator that dominates the compu-

tation ofm1=2
0 "fosc# at the slected fosc. Them0"fint; fosc# pan-

Figure 11. Plots depicting the contribution of signal power and oscillator response in the computation of m0"fosc#. The first and third
columns depict the m0-kernel function (jYSDOF"f; fosc#j2) at different oscillator frequencies, fosc, whereas the second and fourth columns
depict the normalized m0"fint; fosc# at the same fosc. The two different shades are selected to show these plots for two high-frequency
attenuation parameter (κ0) values 0.04 and 0.006 s, respectively. The vertical lines indicate f2% and f98% frequencies corresponding to
the 2% and 98% values of the final m0"fint; fosc# for the two κ0 values 0.04 (s) (dark solid) and 0.006 (s) (light solid). The dashed vertical
line represents the oscillator frequency, fosc at which the m1=2

0 "fosc# is computed. The color version of this figure is available only in the
electronic edition.
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els (fosc $ 0:3 and 1 Hz) in the top row of Figure 13 also
indicate that the main contribution in m1=2

0 "fosc# for both the
VS profiles is coming from an identical band of frequencies
around the resonance peak (the dashed vertical line). The
strong localization of jYSDOF"f; fosc#j2 around fosc makes
the ratio of m1=2

0 "fosc# and hence that of ymax"fosc# identical to
the ratio of jYgm"f #j. As described earlier at oscillator frequen-
cies beyond the peak of the response spectrum the localized
behavior of jYSDOF"f; fosc#j2 diminshes and a wideband spec-
trum overtakes the contribution to m1=2

0 "fosc# that ultimately
matches with jYgm"f #j2 at a selected fosc, for example,
100 Hz. As can be observed from them0"fint; fosc# panels cor-
responding to fosc > 3 Hz in Figure 13, two significantly dif-
ferent bands of frequencies are controlling the computation of
m1=2

0 "fosc# at a selected fosc that makes the ratio of ymax"fosc#
in Figure 12 different than the ratio of jYgm"f #j which is com-
puted at a single frequency f $ fosc.

Conclusions

The aim of the present article was to provide new in-
sights regarding the distinctions and similarities between the
Fourier spectrum and the corresponding response spectrum
of ground motion which is observed to have a strong influ-
ence regarding the adjustment of response spectral GMPEs to
differences in stress and/or site conditions. Often, it has been
observed that the concepts from the Fourier spectrum per-
spective are applied to the corresponding response spectrum
of a damped SDOF oscillator without paying much attention
to the fact that they essentially represent two different enti-
ties. A simple example of this can be found in the functional
forms of the response spectral GMPEs which are essentially
based upon the scaling laws of Fourier spectral ordinates. In
fact, the obscured relationship between FAS and response
spectrum of ground motion that is referred to at the devel-

opmental stage of a response spectral GMPE can have some
undesirable behaviors particularly when they are adjusted to
different seismological conditions. For performing host-to-
target adjustments of GMPEs, Campbell (2003) proposed a
framework that utilizes the ratio of stochastically simulated
response spectral ordinates with an inherent assumption that
it can capture the relative differences (between host and target)
in seismological parameters. As shown in this article, such an
assumption can lead to unrealistic ratios, which are essentially
not able to capture corresponding relative differences between
the Fourier spectra of the host and target regions.

To have better insights regarding the relationship be-
tween the FAS and the response spectrum of ground motion,
we use RVT, a tool that has been successfully used in the
stochastic simulation method by Boore (1983, 2003). More-
over, RVT has also been used within site response analysis to
obtain the amplification factors relative to a reference rock
spectral acceleration (Rathje and Ozbey, 2006). The stochas-
tic simulation framework of Boore (2003) is used to decipher
the relationships between the FAS and the response spectrum
of ground motion. Although earthquake records cannot be
considered as representing purely stationary signals, the sto-
chastic simulation method has been successfully applied in
different parts of the world owing to its simplicity in captur-
ing the basic scaling of high-frequency ground motions with
respect to commonly used seismological parameters such as
magnitude and distance. That said, the RVT method should
be tested and validated in different seismological environ-
ments with respect to the observed recordings. Stochastic
model parameters appropriate for the WNA region (Camp-
bell, 2003) are used in the present analysis to represent the
FAS model for a scenario magnitude of Mw 6 at distance
RJB $ 20 km. The main aspects of this relationship between
FAS and response spectrum as deciphered by RVT indicate
that the response spectral ordinates at different oscillator fre-
quencies are dominated by different portions of the squared

(a) (b) (c)

Figure 12. Plots depicting the effect of an adjustment made to the site shear-wave velocity (VS) profile on FAS, jYgm"f #j and its impact
on the response spectrum, ymax"fosc# of ground motion. (a) The response spectral ordinates obtained from the empirical model of Boore et al.
(2014) along with those obtained by stochastic simulations for two VS profiles corresponding to the average shear-wave velocity in upper
30 m soil column VS30 620 (host) and 2800 (target) m=s. (b) Simulated FAS, jYgm"f #j for the two VS profiles. (c) The ratios as
ymax;2800 m=s"fosc#=ymax;620 m=s"fosc# and jYgm;2800 m=s"f #j=jYgm;620 m=s"f #j for response spectral ordinates and FAS, respectively. The vertical
lines indicate source-corner frequency fc (dotted dashed), κ0-related corner frequency fκ (dashed gray), and Q related corner frequency fQ
(gray dotted dashed), f2% and f98% (solid black). The dotted vertical line between fκ and fQ corresponds to the frequency related with the
peak of the ymax"fosc# (5 Hz in this case).
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FAS, that is, jYgm"f #j2, of ground motion. The entire discus-
sion regarding the relationship of Fourier and response spec-
tra of ground motion can be summarized with the help of
Figure 14. It depicts that below the peak of the response
spectrum the response spectral ordinates are dominated by
the peaky part of oscillator transfer function, jI"f; fosc#j.
Thus, the scaling of response spectral ordinates below the
peak of response spectra can be considered equivalent to
the scaling of Fourier spectral ordinates at the same frequen-
cies. At high oscillator frequencies (beyond the peak of the
response spectrum), the response spectral ordinates are do-
minated by the smooth part of the oscillator transfer function,
a rather wideband spectrum of ground motion that ultimately
equals the integration over the entire spectrum of the input
ground motion. With respect to PGA (and high-frequency
spectral ordinates in general), our RVT-based considerations
reveal findings that are contrary to the popular perception
that it is assumed to be a high-frequency phenomenon of
ground motion. Response spectral ordinates at high oscillator
frequencies match asymptotically with PGA but do not cor-
respond to the same frequencies of input ground motion. In
fact, PGA and other high oscillator-frequency response spec-
tral ordinates are dominated by the entire frequency-band of
ground motion. The counterintuitive behavior of response

Figure 13. Plots depicting the contribution of signal power and oscillator response in the computation of m0"fosc#. The first and third
columns depict m0-kernel function (jYSDOF"f; fosc#j2) at different oscillator frequencies, fosc, whereas the second and fourth columns depict
the normalized m0"fint; fosc# at the same fosc. The two different shades are selected to show these plots for two VS (shear-wave velocity)
profiles corresponding to the time-averaged shear-wave velocity in upper 30 m of soil column (VS30) 620 and 2800 m=s, respectively. The
vertical lines indicate f2% and f98% frequencies corresponding to the 2% and 98% values of the final m0"fint; fosc# for the two VS profiles
related with VS30 values 620 m=s (dark solid) and 2800 m=s (light solid). The dashed vertical line represents the oscillator frequency fosc at
which the m1=2

0 "fosc# is computed. The color version of this figure is available only in the electronic edition.

Figure 14. Representation of the response spectrum of an SDOF
oscillator (5% damped) excited by the ground-motion acceleration,
jYgm"f #j in terms of the contributions that are coming from the
smooth and peaky parts of the SDOF transfer function jI"f; fosc#j.
For having a better understanding about the effect of each part a rec-
tangular peaky part of jI"f; fosc#j2 is used for this figure. For more
details about the rectangular approximation of the peaky part reader is
referred to in Figures 6 and 7. The color version of this figure is avail-
able only in the electronic edition.

On the Relationship between Fourier and Response Spectra 17

BSSA Early Edition



spectral ordinates with respect to the FAS of ground motion at
high oscillator frequencies can lead to undesirable conse-
quences in the adjustment of response spectral GMPEs. It is
shown that for a stress parameter, Δσ adjustment the re-
sponse spectral ratios, as suggested in hybrid-empirical ap-
proach, do not capture the corresponding ratio of FAS except
over a short frequency band at low oscillator frequencies. In
the case of site-term (VS!κ0) adjustments, at oscillator
frequencies below the peak of the host response spectrum,
the scaling of response spectral ordinates can be regarded
as being equivalent to the FAS of ground motion. Hence, only
at those oscillator frequencies the VS!κ0 adjustments in
GMPEs can be performed by treating the response spectral
ordinates on the same footing as the Fourier spectrum of
ground motion. An enigmatical behavior of PGA in terms of
input FAS requires accounting for the adjustment in the entire
FAS of the ground motion.

The entire analysis presented here clearly implies that
the response and Fourier spectra cannot be treated in the
same way. Moreover, the distinction between the two be-
comes rather important in the adjustment of a response spec-
tral GMPE. Therefore, any adjustment scheme framed in the
response spectral domain may not capture the actual differ-
ence that exists between the corresponding Fourier spectra of
the host and target regions. The Fourier spectral domain pro-
vides a rather physically consistent and transparent way of
adjusting the GMPEs in different seismological environ-
ments. The GMPE that was first presented in Bora et al.
(2014) and subsequently improved and updated in Bora et al.
(2015) can be considered as a beginning in this direction,
which essentially combines two separate empirical models
for the FAS and duration of ground motion through RVT to
obtain the response spectral ordinates. Indeed, the analysis
presented in this study provides strong evidence in favor of
incorporating physics-based models in seismic-hazard analy-
sis, albeit calibrated with the observed recordings.

Data and Resources

The stochastic model parameters used in this study were
considered from table 2 of Campbell (2003). The routines
and subroutines for performing simulations were prepared in
Mathematica software for performing the entire analysis pre-
sented in this study.
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