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We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk

heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole trans-

port layer (HTL). Our devices exhibit a PCE value of �5.5% which is equivalent to that obtained for

control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene):

polystyrenesulfonate as HTL. Inverted cells with PCE>3% were also demonstrated using solution-

processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The

high optical transparency and suitable energetics of CuI make it attractive for application in a range of

inexpensive large-area optoelectronic devices. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4922758]

Organic photodiodes hold tremendous potential for a

range of applications encompassing solar and indoor

energy harvesting (organic photovoltaics (OPVs)), sens-

ing,1–3 and imaging.4,5 This is primarily due to the combi-

nation of a processing versatility that could lead to scalable

and low-cost manufacturing and their potential for me-

chanical flexibility.6 It is now established that the perform-

ance of state-of-the-art diodes is highly dependent on the

interfaces between the conductive electrodes and organic

semiconductors.7,8 Thin layers are often incorporated to

accurately tune the interfacial electronic structure, with

ideal interlayer materials also possessing high optical

transparency and electrical conductivity and supporting

simple low-temperature processing methods. In an effort to

identify and/or develop such interlayer technologies, a

range of materials systems have recently been considered

and implemented in OPV cells.9,10 Amongst these, the

conductive polymer poly(3,4-ethylenedioxythiophene):

polystyrenesulfonate (PEDOT:PSS) is the most studied

hole transport layer (HTL). It has a work function of

�5 eV and supports Ohmic contact between many donor

materials and the commonly used indium tin oxide (ITO)

anode. In addition, PEDOT:PSS helps to planarize and sta-

bilize the ITO surface. It is, however, processed from water

which is hard to fully exclude from the photoactive layer

where it can initiate unwanted chemical reactions.11 It is

also acidic, causing corrosion of the ITO anode12 and

not very effective as an electron blocking material.13 In

an effort to address some/all of these issues, a range of

alternative HTL materials have been investigated, includ-

ing PSS-free vapor phase polymerized PEDOT,14,15

graphene oxide,16 carbon nanotubes (CNTs),17 polyaniline

(PANI),18 p-type metal oxides (e.g., V2O5, MoO3

(Ref. 19), and NiO (Ref. 20)) and most recently CuSCN.21

Despite significant progress there is still a need for better-

optimized HTL materials.

Copper (I) Iodide (CuI) is an ionic solid that has recently

been shown to have potential as a HTL for application in or-

ganic optoelectronics.22 It exhibits three crystalline phases,

namely, a, b, and c,23 of which the c-CuI zinc blende struc-

ture (cubic), known to form at deposition temperatures below

390 �C, is the most interesting for our purpose. c-CuI is a p-

type, wide-bandgap (�3.1 eV)24 semiconductor and, due to

its optical transparency and favourable Fermi level energy,

has previously been used as a HTL in solid-state dye-sensi-

tized solar cells.25 CuI has also been incorporated in organic

light emitting diodes (OLEDs)26 and organic solar cells.22

For example, Shao et al.27 recently reported OPV cells

(power conversion efficiency (PCE) � 3.1%) employing

thermally evaporated CuI as HTL. CuI has also been used as

a p-dopant in hole transporting layers for OPV28 and hybrid

perovskite solar cells.29 Despite these promising initial

results, the full potential of CuI as an inexpensive HTL mate-

rial for high efficiency OPVs has yet to be demonstrated.

Here, we report the use of CuI as a HTL in OPV cells with

bulk-heterojunction (BHJ) blends of poly(di(2-ethylhexyloxy)

benzo[1,2-b:4,5-b0]dithiophene-co-octylthieno[3,4-c]porrole-

4,6-dione) (PBDTTPD)30 and [6,6]-phenyl-C61-butyric acid

methyl ester (PC61BM) (Figure 1(a)). We demonstrate

PCE> 5.5% for standard (bottom-) and >3% for inverted

(top-anode) cells, the latter using a solution-processed In2O3/

ZnO electron transport layer (ETLs) (Figure 1(b)).

Patterned glass/ITO electrodes (40–60 X/sq) were

cleaned sequentially in soapy water, acetone, de-ionized

water, and isopropyl alcohol ultrasonic baths for 5 min each

and subsequently dried with nitrogen gas. The substrates

were then exposed to UV-ozone for 10 min. CuI solutions

were prepared by dissolving copper(I) iodide (Sigma-

Aldrich, 99.9%) in acetonitrile at 20 mg/ml and were

a)Authors to whom correspondence should be addressed. Electronic

addresses: zhqhe@bjtu.edu.cn and t.anthopoulos@imperial.ac.uk
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deposited onto the electrodes by spin coating (1500 rpm)

in nitrogen followed by an annealing step at 100 �C
for 20 min. Reference OPVs were fabricated using PEDOT:

PSS (Clevios PVP Al4083) HTL solutions spin-coated

at 1000 rpm. Solution mixtures of the donor polymer

PBDTTPD and fullerene acceptor PC61BM (1:1.5 wt. % with

15 mg/ml total solid) were spin-coated onto the HTLs at

1000 rpm from chlorobenzene in nitrogen. Bilayer Sm/Al

(10/90 nm) cathode electrodes were evaporated in high vac-

uum (10�6 mbar) to complete the cells with active area of

5 mm2. Inverted solar cells were fabricated using ITO elec-

trodes coated with a bilayer In2O3/ZnO ETL. Solutions of

In2O3 and ZnO were prepared, respectively, by dissolving in-

dium nitrate in 2-methoxyethanol at 30 mg/ml and zinc oxide

hydrate in ammonium hydroxide at 10 mg/ml. First, the

In2O3 precursor was spin-coated at 2500 rpm and subse-

quently annealed at 200 �C for 30 min in air, which allows

Indium nitrate convert to Indium oxide, yielding films of

thickness 8–10 nm. ZnO was then spin-coated on top at

2000 rpm and annealed at 200 �C for 30 min in air to produce

a 8–10 nm-thick layer. The PBDTTPD:PC61BM blend

was next spin-coated, followed by thermal evaporation

(10�6 mbar) of a 25 nm-thickness CuI HTL. Finally, a

bilayer Au/Ag (10/70 nm) anode was thermally evaporated

(10�6 mbar) on top. Ultraviolet-visible-near infrared (UV-

vis-NIR) absorption spectra (200–1400 nm) were measured

using a Shimadzu UV-2600 spectrophotometer, while the

surface topography of the films using an Agilent 5500 atomic

force microscope (AFM). Current density-voltage (J-V)

characteristics in nitrogen were obtained with a 2400

Keithley source-meter in the dark and under AM 1.5G simu-

lated solar illumination (100 mW/cm2). EQE values were

calculated from the device spectral response characteristics

recorded under mechanically chopped, monochromated light

from a 30 W quartz tungsten halogen lamp. During EQE

measurements, the active area of each device (5 mm2) was

masked using a stencil mask in order to avoid parasitic cur-

rent contribution. Work function measurements were per-

formed using a Kelvin probe (KP) system (KP-Technology

SK5050), with the absolute work function of the reference

and the valence band maximum (VBM) energy of CuI deter-

mined using an atmospheric photoemission (AP) system

(KP-APS02). During AP measurements, the sample is irradi-

ated with a monochromatic light of varying energy between

6.5 and 3.5 eV and a photocurrent between the sample and a

metallic Kelvin probe (tip) placed in close proximity to the

sample can be detected. Since only photons with sufficient

energy can lead to emission of photoelectrons, the photocur-

rent increases with increasing photon energy. The ionization

energy can then be determined via Fowler analysis.

The highest occupied (HOMO) and lowest unoccupied

(LUMO) molecular orbital energies for PBDTTPD and

PC61BM30 are shown in Figure 1(c), together with the meas-

ured work function (by KP) values for HTLs PEDOT:PSS

and CuI and ETL In2O3/ZnO. The VBM values for the

solution-processed [CuI(sln)] and evaporated [CuI(eva)] CuI

layers were determined to be �5.26 (60.05) eV and �5.05

(60.05) eV, respectively (Figure S1).31 The Fermi energy

(EF) levels were also measured for these layers by Kelvin

probe, yielding �5.22 and �5 eV, respectively. The near

coincidence of VBM and EF values points to both CuI layers

being heavily p-doped.

X-ray photoelectron spectroscopy (XPS) and X-ray dif-

fraction (XRD) measurements (Figures S2 and S3)31 were

used to probe the differences in chemical composition and

crystal structure, respectively, for the CuI(sln) and CuI(eva)

layers. XPS measurements reveal that both samples are io-

dine deficient (Table S1)31 but that the CuI(sln) films are

slightly more so, with [I]/[Cu]¼ 0.734 versus 0.850 for

CuI(eva). This difference may explain the slightly different

value of the measured work functions between CuI(sln) and

CuI(eva). However, further work is needed to clarify this

point, possibly using photoluminescence measurements.

Furthermore, XRD analysis revealed that both samples ex-

hibit exclusively (111) and (222) peaks, consistent with a

dominant c-CuI zinc blende structure.24 CuI(eva) films

appear, however, to be composed of larger crystallites than

CuI(sln) layers (Table S1).31 Again, this difference may be

responsible for the stoichiometric, and hence electronic, dif-

ferences between the two types of CuI layers.

FIG. 1. (a) Chemical structures of the donor polymer (PBDTTPD) and the

acceptor fullerene derivative (PC61BM) used. (b) Schematic structures of the

standard and inverted solar cells. (c) HOMO and LUMO energies for

PBDTTPD and PC61BM obtained from Ref. 30, together with the measured

work function energies for PEDOT:PSS, CuI(sln), CuI(eva), and In2O3/ZnO.

243302-2 Peng et al. Appl. Phys. Lett. 106, 243302 (2015)
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Figure 2(a) displays the UV-vis-NIR absorption spectra

for CuI(sln), CuI(eva), and spin-coated PEDOT:PSS layers.

Across the solar-energy-relevant 400–1400 nm range, CuI

shows consistently higher transmission than PEDOT:PSS, a

desirable property for standard (bottom ITO anode) solar cell

use. Both CuI layers exhibit an absorption onset at �420 nm

(2.95 eV), with a sharp peak for CuI(sln) and a shoulder for

CuI(eva) at �404 nm (3.07 eV) that can be assigned to the

Z1,2 band edge exciton transitions.24 The higher energy peak

at �336 nm (3.69 eV) is then the associated Z3 split-off band

transition and that at �258 nm (4.80 eV) the E1 transition

from the top valence band to the conduction band at higher k
along the [111] direction.24 Additional features appear near

371 nm and 381 nm for CuI(eva) and may, in part, arise from

the effects of strain24 but further studies will be needed to

confirm or refute this proposal.

The surface topography of the different HTL layers was

studied via AFM and Figure 2(b) displays images for 40 nm

PEDOT:PSS (2nd from left) and 40 nm CuI(sln) (2nd from

right) spin-coated on ITO and for 25 nm CuI(eva) (right) de-

posited on glass. The surface topography of the ITO substrate

(left) is also shown. The extracted root mean square (rms) sur-

face roughness of the latter was �3.8 nm. PEDOT:PSS tends

to planarize ITO electrodes14 and here exhibited rms values

�1.44 nm. Conversely CuI(sln) more closely conformed to

the ITO surface with rms roughness �4 nm. CuI(eva) on glass

is again approximately conformal with rms roughness

�1.17 nm. The difference in the surface roughness is better

illustrated in the height histogram of Figure 2(c), where the

height distribution of each material surface is plotted on the

same axis. It can be seen that smoother surfaces, e.g., glass/

ITO/PEDOT:PSS and glass/evaporated CuI, exhibit narrow

distributions peaked at smaller height values.

To test the performance of CuI as a HTL in OPV cells, we

fabricated standard structures (Figure 1) based on

PBDTTPD:PC61BM BHJ blends. PEDOT:PSS HTL standard

cells were also fabricated as control devices. Both CuI and

PEDOT:PSS HTLs were �35 nm thickness in order to allow a

direct performance comparison. Figure 3(a) displays the cur-

rent density-voltage (J-V) characteristics measured for one sun

illumination (AM1.5G, 100 mW/cm2), while Figure S4 shows

the J-V characteristics measured in the dark.31 Table I summa-

rizes the various solar cell parameters extracted from the J-V

characteristics. It is evident that the CuI(sln) cells exhibit

equivalent efficiency (PCE� 5.54%) to reference PEDOT:PSS

devices (PCE� 5.5%). Their high open circuit voltage

(VOC¼ 0.81 V) and reasonable fill factor (FF� 0.5) values

suggest that these cells do not suffer from either large contact

resistances or high bulk resistivities, supporting the potential of

CuI as an OPV HTL material. The CuI(sln) cells generate a

moderately higher short-circuit current density (JSC) than

PEDOT:PSS HTL devices. This is likely to arise from the

reduced “parasitic” absorption of CuI compared to

PEDOT:PSS (c.f. Figure 2(a)), leading to higher optical

absorption within the BHJ blend layer. Finally, we note that as-

prepared CuI-based OPVs are chemically stable and continue

to work even after storage in the glove box for several months.

From these results, we conclude that CuI(sln) can indeed be

employed as a HTL in OPV cells in place of PEDOT:PSS.

FIG. 2. (a) UV-vis-NIR absorption spectra of PEDOT:PSS and CuI(sln)

films on ITO/glass and CuI(eva) on glass. (b) AFM surface topography

images of ITO (left), ITO/PEDOT:PSS (2nd left), ITO/CuI(sln) (2nd right),

and CuI(eva) (right) on glass. (c) Height histogram extracted from the AFM

topography images in (b).

FIG. 3. (a) J-V characteristics and (b) external quantum efficiency (EQE)

spectra for standard (with PEDOT:PSS and CuI(sln) as HTL) and inverted

(with CuI(eva) HTL) PBDTTPD:PC61BM BHJ blend solar cells.
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In order to further demonstrate the versatility of CuI as a

HTL material, we also fabricated inverted OPV cells (Fig.

1(b)) using In2O3/ZnO (40 nm combined thickness) as ETL

and CuI(eva) (25 nm) as HTL. Figure 3(a) displays a repre-

sentative J-V characteristic for such a cell. The device per-

formance is inferior to CuI(sln) HTL standard structure cells,

with PCE restricted to 3.12% by significantly reduced VOC

and FF values (see Table I). The reduced FF is thought to be

due to imperfections/discontinuities in the metal oxide ETL

and in particular, the presence of pinholes that lead to

leakage currents. A relatively low shunt resistance (RSh

¼ 1.4� 102 X/cm2) is deduced for the inverted cell relative

to the standard CuI(sln) OPV cell (RSh¼ 3.3� 102 X/cm2).

The reduced VOC value further suggests that the ETL has a

negative effect on the cell energetics. These results neverthe-

less show that CuI and In2O3/ZnO have potential, respec-

tively, for HTL and ETL use in inverted OPV cells; further

optimization will, however, be required.

We also measured the external quantum efficiency

(EQE) spectra for each solar cell (Figure 3(b)), with both

standard and inverted devices exhibiting a broad EQE

spectra that matches the absorption of the BHJ PBDTTPD:

PC61BM blend (not shown). Standard CuI(sln) cells exhibit

an EQE that is marginally higher than the reference PEDOT:

PSS devices at wavelengths from 400 to �500 nm, is then

marginally lower up to �600 nm, and finally peaks at a

comparable �60% at 650 nm. In agreement with their lower

JSC, our inverted CuI(eva) cells show a lower maximum

EQE� 40%, again peaking at 650 nm. As already noted

above, it is anticipated that it should be possible to increase

the PCE of the latter cells by optimization of the ETL.

In summary, we have reported the use of CuI as a HTL

material in efficient standard and inverted BHJ OPV cells.

CuI(sln) devices based on the standard (ITO bottom anode)

architecture show a maximum PCE of �5.54%, highlighting

the potential that CuI has as an inexpensive HTL system.

Combination with a low-temperature solution-processed

bilayer metal oxide ETL, use of CuI(eva) as HTL and a top

Au/Ag anode electrode, also enabled the fabrication of inverted

OPV cells with promising performance characteristics.
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TABLE I. Operating parameters of standard and inverted OPV cells based on different HTLs.

Device structure HTL Jsc (mA/cm2) Voc (V) FF PCE (%) RSh (X/cm2)

Standard PEDOT: PSS 12.4 (60.5)a 0.83 (60.01)a 0.54 (60.02)a 5.50 (60.15)a 4.9� 102

CuI(sln) 14.0 (60.2)a 0.81 (60.01)a 0.50 (60.01)a 5.54 (60.08)a 3.3� 102

Inverted CuI(eva) 11.5 (61.6)a 0.69 (60.04)a 0.40 (60.02)a 3.12 (60.38)a 1.4� 102

aStandard deviation.
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