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We consider self-diffusiophoresis of axisymmetric particles using the continuum de-

scription of Golestanian et al. [New J. Phys. 9, 126 (2007)] where the chemical

reaction at the particle boundary is modelled by a prescribed distribution of solute

absorption and the interaction of solute molecules with that boundary is represented

by diffusio-osmotic slip. With a view towards modelling of needle-like particle shapes,

commonly employed in experiments, the self-propulsion problem is analyzed using

slender-body theory. For a particle of length 2L whose boundary is specified by the

axial distribution κ(z) of cross-sectional radius, we obtain the following approxima-

tion for the particle velocity,

− µ

2DL

∫ L

−L

j(z)
dκ(z)

dz
dz,

wherein j(z) is the solute-flux distribution, µ the diffusio-osmotic slip coefficient, and

D the solute diffusivity. This approximation can accommodate discontinuous flux

distributions, which are commonly used for describing bimetallic particles; it agrees

strikingly well with the numerical calculations of Popescu et al. [Eur. Phys. J. E

Soft Matter 31, 351–367 (2010)], performed for spheroidal particles.
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Chemical self-propulsion of a micron-size particle results from a solute-consuming catal-

ysis or solute-producing polymerization at the particle boundary through the interaction

of the solute molecules with that boundary. This self-propulsion mechanism, originally

demonstrated in the experiments of Paxton et al.,1 has attracted significant attention in

the physics, chemistry, and engineering communities, resulting in extensive modelling2,3 and

experimental4,5 efforts. When the solute is electrically neutral and sufficiently dilute, its

short-range interaction with the particle boundary may be represented by a simple diffusio-

osmotic slip condition,6 relating the velocity jump across the interaction layer to the tangen-

tial gradient of solute concentration. A simple model of such a slip-based self-diffusiophoresis

was provided by Golestanian et al.,3 who for simplicity described the chemical reaction by a

prescribed distribution of solute flux. A different “colloidal” description, using the osmotic-

pressure concept, was provided by Córdova-Figueroa et al.;7 the linkage between the colloidal

and continuum approaches was discussed by Brady8 and Córdova-Figueroa et al.9

In experimental demonstrations of chemical self-propulsion it is common to employ rod-

like particles.1,10–12 It is therefore desirable to derive approximations for the speed acquired

by elongated shapes.1,3,10,13 In this letter we accomplish this by applying slender-body tech-

niques within the slip-based continuum framework of Golestanian et al.3 The methodology

used herein resembles that employed in the slender-body analysis of an electrokinetic model

of self-propulsion.14

We consider an axisymmetric particle of length 2L and characteristic width a which

is suspended in a viscous liquid. In the continuum description of Golestanian et al.3 the

catalytic reaction on the particle boundary is represented by a prescribed flux of solute

into the boundary, say of typical magnitude α. In that description solute transport is

purely diffusive,15 governed by the solute diffusivity D. We use a dimensionless notation

where length variables are normalized by L; the excess-solute concentration c, relative to

the ambient concentration, by C = αa/D; and velocities by µC/L, µ being the (uniform)

diffusio-osmotic slip coefficient. Our goal is the calculation of the particle velocity U relative

to the otherwise quiescent liquid.

The governing equations are written using a particle-fixed cylindrical coordinate system,

with the z-axis lying along the particle symmetry axis: see Fig. 1. The particle boundary is

given by

r = ǫκ(z) for − 1 < z < 1, (1)
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FIG. 1. Schematic of the particle geometry and cylindrical coordinates.

where r is the radial coordinate, and ǫ = a/L is the particle slenderness. With these

definitions, the shape function κ(z) is O(1); we impose, with no loss of generality,

κ(0) = 1. (2)

In addition, κ(z) satisfies the end conditions

κ(±1) = 0. (3)

The excess-solute concentration is governed by Laplace’s equation

∇2c = 0 for r > ǫκ(z), (4)

the imposed-flux condition

∂c

∂n
= ǫ−1j(z) at r = ǫκ(z), (5)

where j(x) is the inward solute flux, normalized by α, and the decay requirement,

c → 0 as r2 + z2 → ∞. (6)

The flow field is governed by the continuity and Stokes equations. It is engendered by the

diffusio-osmotic slip condition

u = ∇sc at r = ǫκ(z), (7)
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in which ∇s is the surface-gradient operator, and the far-field approach to a uniform stream,

u → −U k̂ as r2 + z2 → ∞, (8)

k̂ being a unit vector in the z-direction. The self-propulsion speed U is set by requiring the

particle to be force free.

We now consider the slender limit ǫ ≪ 1 using inner–outer asymptotic expansions.16

The “outer” region, with r fixed as ǫ → 0, describes transport on the longitudinal scale,

where the particle appears as a zero-thickness line segment of length 2. The “inner” region,

where r = O(ǫ) as ǫ → 0, describes transport on the cross-sectional scale, where the particle

appears as an infinite cylinder of a quasi-uniform radius. The latter limit is facilitated by the

introduction of the stretched radial coordinate ρ = r/ǫ. In terms of this inner coordinate the

particle boundary is ρ = κ(z), while the normal-derivative and surface-gradient operators

adopt the respective forms

∂

∂n
≈ 1

ǫ

∂

∂ρ
, ∇s ≈ k̂

(

∂

∂z
+

dκ

dz

∂

∂ρ

)

. (9)

Hereafter, the approximation symbol ‘≈’ implies a relative error which is at least as small

as some positive power of ǫ, and is accordingly smaller than any power of 1/ ln ǫ.

We begin with the calculation of c. In the inner region, condition (5) in conjunction with

(9) suggests the expansion c ≈ c̄(ρ, z; ǫ)+ · · · , wherein c̄ is allowed to depend logarithmically

upon ǫ. This variable is governed by the leading-order balance of Laplace’s equation,

∂

∂ρ

(

ρ
∂c̄

∂ρ

)

= 0 for ρ > κ(z), (10)

and the imposed-flux condition (5), namely

∂c̄

∂ρ
= j(z) at ρ = κ(z). (11)

The solution of (10)–(11) is

c̄ = C(z; ǫ) + j(z)κ(z) ln ρ, (12)

where the integration “constant” C is determined by matching with the outer solution.

In the outer region we write c ≈ c̃(r, z)+ · · · , where c̃ is represented as a line distribution

of sources

c̃ =

∫ 1

−1

s(ζ) dζ
√

r2 + (z − ζ)2
, (13)
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which automatically satisfies Laplace’s equations (4) and the attenuation condition (6). The

source intensity s(z) is determined by asymptotic matching with the inner solution. To this

end we employ the small-r approximation of (13),17

c̃ = 2s(z) ln
2
√
1− z2

r
+

∫ 1

−1

s(ζ)− s(z)

|ζ − z| dζ +O(r2). (14)

Performing the matching we readily find that s(z) = −j(z)κ(z)/2, and hence

C(z; ǫ) = C−1(z) ln
1

ǫ
+ C0(z), (15)

wherein C−1(z) = −j(z)κ(z) and

C0(z) = −j(z)κ(z) ln(2
√
1− z2)− 1

2

∫ 1

−1

j(ζ)κ(ζ)− j(z)κ(z)

|ζ − z| dζ. (16)

Using (12) and (15) we obtain
(

∂c

∂z
+

dκ

dz

∂c

∂ρ

)

ρ=κ(z)

≈ ln(1/ǫ)W−1(r, z) +W0(r, z)
def
= W (z; ǫ), (17)

wherein

W−1 =
dC−1

dz
, W0 =

dC0

dz
+ ln κ(z)

d

dz
[j(z)κ(z)] + j(z)

dκ

dz
. (18)

In particular, use of (3) implies that
∫ 1

−1

W−1(z) dz = 0. (19)

We now proceed to the calculation of the velocity field. In particular, we consider the

axial velocity component w. Its inner and outer expansions are w ≈ w̄(ρ, z; ǫ) + · · · and

w ≈ w̃(r, z; ǫ) + · · · , respectively, in which w̄ and w̃ are allowed to depend weakly on ǫ. In

the inner region, the general axisymmetric solution of the degenerated Stokes equations is

well known.16 Imposing the slip condition w̄ = W at ρ = κ(z) [see (17)], the axial velocity

component reads

w̄ = W (z; ǫ) + A(z; ǫ) ln
ρ

κ(z)
, (20)

where we allow A to depend weakly on ǫ through an expansion in inverse powers of ln(1/ǫ),

A(z; ǫ) = A0(z) +
1

ln(1/ǫ)
A1(z) + · · · . (21)

In the outer region, the disturbance relative to the uniform stream is represented by a

line-singularity distribution of Stokeslets,

w̃ + U =

∫ 1

−1

F(ζ ; ǫ)

{

1

[r2 + (z − ζ)2]1/2
+

(z − ζ)2

[r2 + (z − ζ)2]3/2

}

dζ, (22)
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wherein the force density F(z; ǫ) possesses an expansion in inverse powers of ln(1/ǫ),

F(z; ǫ) = F0(z) +
1

ln(1/ǫ)
F1(z) + · · · ; (23)

we note that at small r the right-hand side of (22) is

4F(z; ǫ) ln
2
√
1− z2

r
− 2F(z; ǫ) + 2

∫ 1

−1

F(ζ ; ǫ)− F(z; ǫ)

|ζ − z| dζ +O(r2). (24)

The particle speed U is set by the force-free condition

∫ 1

−1

F(z; ǫ) dz = 0. (25)

In view of expansion (23), this is tantamount to an infinite sequence of conditions governing

{Fn}∞n=0. Since the slip expression (17) begins at O(ln ǫ), it is plausible to postulate an

expansion for the particle speed that begins at this asymptotic order:

U = ln(1/ǫ)U−1 + U0 +
1

ln(1/ǫ)
U1 + · · · . (26)

Performing the asymptotic matching using an intermediate variable18 we readily obtain

An(z) = −4Fn(z) for all n. Leading-order matching at O(ln ǫ) yields F0(z) = [U−1 +

W−1(z)]/4. Application of (25) and use of (19) thus yields U−1 = 0. The large leading-order

slip does not result in a comparable self-propulsion speed.

We therefore need to go to O(1) at the matching process, where we obtain

U0 +W0(z)− 4F1(z) = W−1(z) ln
2
√
1− z2

κ(z)
− 1

2
W−1(z) +

1

2

∫ 1

−1

W−1(ζ)−W−1(z)

|ζ − z| dζ, (27)

which serves as an equation governing F1. Application of (19) and (25) yields here

U0 =
1

2

∫ 1

−1

W−1(z) ln
2
√
1− z2

κ(z)
dz − 1

2

∫ 1

−1

W0(z) dz. (28)

Substitution of (18) followed by integration by parts in conjunction with (3) and (16) yields

the remarkably simple approximation

U0 = −1

2

∫ 1

−1

j(z)
dκ

dz
dz, (29)

whose dimensional version is provided in the abstract.

In modelling realistic inhomogeneous swimmers, which are typically composed of two dif-

ferent metallic segments (e.g. gold and platinum), it is common19 to employ a discontinuous
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distribution of chemical activity, say j(z) = 1 for z > 0 and 0 for z < 0. Making use of

(2)–(3) then yields the result

U0 =
1

2
, (30)

which is independent of the particle shape. Expression (30) can be compared with the

numerical calculations of Popescu et al.13 for spheroidal particles with the same janus-type

flux distribution. The smallest value of ǫ for which results are provided in Fig. 4(a) of Ref. 13

is about 0.1; in the present notation, the corresponding value of U is visually interpreted

as about 0.48 — a remarkable agreement with (30). Given the O(1/ ln ǫ) relative error in

(30) and the moderate slenderness value used in the above comparison, this agreement may

actually appear too good to be true. To understand it, we perform asymptotic matching at

the next order, O(1/ ln ǫ), obtaining the velocity correction

U1 = 2

∫ 1

−1

F1(z) ln
2
√
1− z2

κ(z)
dz. (31)

In principle, substitution of F1(z) as provided by (27) would result in (a rather complicated)

expression for the velocity correction. In the particular case of spheroids, however, the

integral appearing in (31) vanishes due to (25), whereby U1 = 0. In fact, it is readily verified

that this is the case at all subsequent asymptotic orders. We conclude that in the particular

case of a spheroid U = U0 with an algebraic error, thus explaining the agreement with

Popescu et al.13

Our derivation of (30), which is independent of particle shape, hinges upon condition

(3). This constraint does not preclude straight rods which can be represented by shape

functions dropping to 0 at z = ±1 rapidly but smoothly. If that is not the case, a systematic

scheme requires accounting for end effects. In this context, we note that our approximation

fundamentally differs from the formula obtained by Golestanian et al.3 in the case of a

cylindrical rod: see Eq. (16) in that paper. In fact, that formula does not resemble at all

the more primitive expression (29) obtained herein. We could not understand the manner

by which Golestanian et al.3 have obtained their formula. Equation (14) in Ref. 3, which

underlies it, appears to be a meaningless interpretation of a line-singularity representation,

as it involves an integral that does not exist.

We suspect that the erroneous formula in Golestanian et al.3 is a consequence of an

attempt to apply an intuitive approach in a delicate situation where the diffuso-osmotic slip

and self-propulsion speed are not of the same asymptotic order. In that sense, this is quite an
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exceptional slender-body problem. An important consequence of the logarithmically large

slip is that the leading-order outer velocity induced by the particle,

1

4
k̂ ·

∫ 1

−1

W−1(ζ)

(

I

|x′| +
x
′
x
′

|x′|3
)

dζ (32)

(I being the idemfactor, x′ = x−ζk̂), is of the same order as the particle velocity. This implies

unusually strong O(1) hydrodynamic interactions. Considering large |x|, (32) degenerates

to the stresslet20 flow S : xxx/|x|5, wherein

S =
1

4
(3k̂k̂− I)

∫ 1

−1

j(ζ)κ(ζ) dζ. (33)

Last, the standard modelling in the literature of auto-diffusiophoresis involves a fore–aft

symmetric particle shape (e.g. spheres19 and spheroids13) where the preferred direction for

motion is set by an asymmetric distribution of chemical reaction. It was noted however by

Shklyaev et al.21 that homogeneous particles can also undergo chemical locomotion, pro-

vided that their shape is fore–aft asymmetric.22 Shklyaev et al.21 demonstrated this concept

for such axisymmetric particles, using a combination of approximation methods for small

deviation from sphericity and numerical methods for finite non-sphericity.

Unsurprisingly, the swimming speed found by Shklyaev et al.21 for nearly-spherical par-

ticles turned out to be small, proportional to the square of the distortion from sphericity.

Practical interest thus lies in finite non-sphericity. The present scheme may be readily ap-

plied to study such homogeneous asymmetric particles. Setting j ≡ 1 in (29) in conjunction

with (3) results in a trivial approximation. The particle velocity in this case is therefore

O(1/ ln ǫ); it may be obtained by substituting F1, as provided by (27), into (31).
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7U. M. Córdova-Figueroa and J. F. Brady, “Osmotic propulsion: The osmotic motor,” Phys.

Rev. Lett. 100, 158303 (2008).

8J. F. Brady, “Particle motion driven by solute gradients with application to autonomous

motion: continuum and colloidal perspectives,” J. Fluid Mech. 667, 216–259 (2011).
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