
Modelling the fluid phase behaviour of aqueous mixtures of

multifunctional alkanolamines and carbon dioxide using

transferable parameters with the SAFT-VR approach

J. Rodriguez, N. Mac Dowell, F. Llovell, C. S. Adjiman, G. Jackson and A. Galindo*

Department of Chemical Engineering, Imperial College London,

and Centre for Process Systems Engineering,

South Kensington Campus, London SW7 2AZ

*Corresponding author: a.galindo@imperial.ac.uk

PACS numbers:

1



Abstract

Among the many applications that alkanolamines find in industry, carbon dioxide (CO 2)

capture from large stationary sources is becoming most relevant. Aqueous mixtures of

amines and CO2 have a complex behaviour, characterised by extensive hydrogen bonding

and other types of chemical reactions. An implicit treatment of the key reactions via

appropriate association schemes has been shown to provide a promising physical basis for

the modelling of these systems. Here, we introduce association models for use with SAFT-

VR for some of the more promising multifunctional alkanolamines in the context of CO 2

capture: monoethanolamine (MEA), 2-amino-2-methyl-1-propanol (AMP), diethanolamine

(DEA) and methyldiethanolamine (MDEA), and their mixtures with H2O and CO2. A

revised model of the MEA + H2O + CO2 mixture is also presented with an extension to

high temperature. Excellent predictive capabilities are demonstrated for pure components

and binary aqueous mixtures. Good overall results are also obtained for the ternary aqueous

mixtures of alkanolamines and CO2, particulary for DEA and MDEA. Furthermore, the

degree of speciation is successfully predicted for the MEA + H2O + CO2 mixture. Since

only a limited number of parameters need to be estimated from vapour-liquid equilibrium

data, the ternary SAFT-VR reaction-implicit models developed in this work offer a useful

initial assessment of the different solvents and blends.
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I. INTRODUCTION

Multifunctional alkanolamines, molecules containing both amine and hydroxyl functional

groups, are common in natural products. For example amino acids such as hydroxyproline

as well as hormones and neurotransmitters such as epinephrine (adrenaline) and nore-

pinephrine (noradrenaline) are alkanolamines1. Furthermore, alkanolamines are versatile

compounds that find application across a range of industries: they are used as beta blockers

(propranolol) as well as surfactants, corrosion inhibitors and for pH adjustment. Another

area where alkanolamines have traditionally found significant application is in the removal

of acid gases such as hydrogen sulfide (H2S) from gas streams in oil and gas refineries2.

More recently, in light of growing concern surrounding anthropogenic carbon dioxide

(CO2) emissions3, there has been a great deal of renewed interest in alkanolamine-based

chemisorption processes as part of the effort to mitigate these emissions, particularly

from large fixed-point emission sources such as fossil-fuel fired power-stations 4,5. Solvents

that are receiving particular attention include monoethanolamine (MEA), diethanolamine

(DEA), methyldiethanolamine (MDEA) and 2-amino-2-methyl-1-propanol (AMP) 5. The

large-scale deployment of alkanolamine-based CO2 capture technology will entail a signific-

ant economic penalty6, and the reduction of this cost is a well recognised imperative7. As

it is the thermophysical properties of these alkanolamine solvents in aqueous mixtures with

CO2 that define the limits of process operation, the availability of accurate and predictive

models of these fluids is vital in the optimal design and operation of CO 2 capture processes.

In this paper, we describe the use of the statistical associating fluid theory for poten-

tials of variable range (SAFT-VR)8–12 to calculate the equilibrium fluid-phase behaviour of

aqueous mixtures of multifunctional alkanolamines and CO2. The first successful descrip-

tion of associating and reacting systems is the chemical theory of solutions developed by

Dolezalek13–15. In this type of chemical approach one postulates the existence of distinct

molecular species in solution, which are assumed to be in chemical equilibrium. For associ-

ating systems the strong anisotropic hydrogen-bonding (physical) interactions are treated

as chemical reactions with corresponding equilibrium constants. An important disadvant-

age with a chemical treatment lies in having to account for all of the equilibrium species and

corresponding reaction mechanisms. After assuming a particular equilibrium scheme, one

is then faced with the problem of determining the equilibrium constants together with their

temperature and concentration/density dependences. This limits the predictive capabilit-

ies of chemical theories, though with appropriate experimental data the approach can be
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used very successfully to represent the behaviour of highly non-ideal solutions when other

approaches are inappropriate. From a seemingly diametric physical standpoint, originally

attributed to van Laar16,17 and his followers, the existence of any molecular species other

than the unreacted components is denied, and the properties of the mixture are attributed

to large differences in the intermolecular interactions between the species which may lead

to aggregation. While the opposing chemical and physical perspectives to dealing with

reactive mixtures led to “harsh polemic” from the very beginning18, it is now recognized

that the Dolezalek and van Laar views are but extreme representations of the actual situ-

ation: the distinction between chemical and physical forces is often arbitrary and in many

cases the designation of a mixture as “chemical” or “physical” is only a matter of taste or

convenience19. It is reasonable to assume that a physical treatment is appropriate when the

“reactions” do not lead to species which are very different chemically, particularly in the

case of reversible reactions, but of course this will not be the case when the products are

significantly distinct from the reactants. Equations of state of the SAFT family are cast as

physical theories of the liquid state. In developing our SAFT-VR models of carbon dioxide

in aqueous alkanolamine solvents we implicitly assume a physical model of the reversible

chemical reactions involved in the absorption process: a strong association interaction is

used to mimic the aggregation processes in solution whereby after complete “reaction” each

carbon dioxide molecule is associated to one or two molecules of the alkanolamine, depend-

ing on the stoichiometry of the reaction. Economou and Donohue20 have shown that a

SAFT treatment is equivalent to the chemical or quasi-chemical approaches as long as the

correct reaction stoichiometry is incorporated. It is also important to point out that the

reactions involved in the mixtures of CO2 in aqueous alkanolamines involve the formation

of charged species. Though the SAFT-VR approach has been extended to describe electro-

lyte solutions21,22 we do not consider ionic speciation explicitly in our current work. The

reactions are instead assumed to involve the association of the various species as aggregates

(bound ion pairs) with no net overall charge. The dielectric constant of the alkanolamine

solutions are 2 to 5 times lower that of pure water, which would certainly be consistent

with conditions where one would expect ion pairing, particularly at higher temperatures.

In a previous paper23 it was shown that, in order to model accurately aqueous mix-

tures of MEA and CO2 with an approach based on the statistical associating fluid theory

SAFT-VR, it is vital to distinguish between the amine and hydroxyl functional groups in

developing an association scheme. The main drawback of incorporating such a level of
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molecular detail is the introduction of extra molecular parameters required to character-

ise these molecules, as compared to a simpler treatment of molecular interactions. This

places an additional burden on parameter estimation, and requires additional data to derive

statistically significant parameter values. To circumvent this issue, we reduce the number

of parameters to be estimated by transferring some SAFT-VR molecular interaction from

models of monofunctional compounds to models of multifunctional compounds. We also

apply this approach to mixtures, transferring the molecular parameters describing the un-

like association interactions from mixtures of monofunctional associating compounds to

mixtures of multifunctional associating compounds. This approach to model development

preserves a high level of molecular detail whilst minimising the number of intermolecular

model parameters that need to be determined. Furthermore, the methodology facilitates

the development of detailed molecular models in the absence of extensive experimental

data.

There have been extensive previous investigations of the thermophysical properties and

fluid-phase behaviour of alkanolamines, and a complete review of the literature covering

this area is beyond the scope of our paper. Thus, only work which also utilises a Wertheim-

like description of association interactions and some of the more recent contributions using

popular methods are discussed here. One approach which has often been used to describe

the fluid-phase behaviour of the alkanolamines is the eNRTL theory24,25. It is worth noting

that whilst the original version of the eNRTL approach has been applied to alkanolamine

systems by several authors26–28, it has recently been shown by Bollas et al.29 that the

original eNRTL leads to an inconsistent description of mixtures containing multiple anions

and/or cations. To this end, Bollas et al.29 presented an improved version, specifically

for application to multi-electrolyte systems. This approach was then successfully used by

Hessen et al.30 to describe the fluid-phase behaviour of aqueous mixtures of alkanolamines

and CO2. A different version of the eNRTL model31 has been employed by Zhang and

Chen32 to calculate the thermodyanmic properties of the MDEA + H2O + CO2 system.

Another relevant approach is the extended UNIQUAC treatment of Thomsen et al. 33,34,

which has been used recently by Faramarzi et al.35,36 to study the absorption of CO2 in

aqueous solutions of alkanolamines.

Equation of state approaches have also been used to describe the fluid-phase behaviour

of alkanolamine systems. The electrolyte equation of state presented by Fürst and Renon 37

has been used in several contributions38–40 to describe the fluid-phase behaviour of the ab-

sorption of CO2 in aqueous alkanolamine mixtures. Huang and Radosz41 have presented
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models for a number of primary, secondary and tertiary amines, including diethylamine.

They modelled diethylamine as a self-associating compound, and used a two-site association

scheme to do this. Button and Gubbins42 used the original SAFT approach41,43 to model

the vapour-liquid equilibria of mixtures of CO2 + MEA + H2O and CO2 + DEA + H2O.

They explicitly recognised the multifunctional nature between the molecules, but did not

include the asymmetry of the association of the alkanolamines in their model. Despite the

simplified description of the hydrogen-bonding interactions in the model, Button and Gub-

bins presented an accurate description of the vapour-liquid equilibrium of both the pure

alkanolamines and the aqueous solutions using a single temperature-independent unlike

binary parameter. They also presented predictions for the ternary mixtures of alkanolam-

ines, water and carbon dioxide, but the deviations of the model from the experimental data

are significant. These results are consistent with the conclusions presented in a previous

work23, where the benefit of explicitly describing the individual functional groups did not

become apparent until multicomponent mixtures were studied. Avlund et al. 44 have applied

the cubic plus association (CPA) equation of state45 to aqueous mixtures of alkanolamines

using a 4-site association scheme for all the compounds. While the multifunctional nature

of the alkanolamines was recognised, they do not discriminate between the properties of

the different functional groups. Despite this simplification, their models accurately describe

the fluid-phase behaviour of aqueous mixtures of MEA, DEA and MDEA. This work has

been recently improved and compared with the sPC-SAFT equation of state46. However,

no attempt is made to model ternary mixtures including CO2. Sánchez et al.47,48 have

recently applied the group contribution with association equation of state (GCA-EOS) 49 to

predict the phase behaviour of MEA, DEA, MDEA and their aqueous mixtures, with very

promising results. Finally, Rozmus et al50 have succesfully applied a group contribution

method based on the PC-SAFT equation of state (GC-PPC-SAFT)to describe the phase

behaviour of amines and their mixtures with alkanes and alcohols.

In our current work, we use the statistical associating fluid theory for potentials of

variable range (SAFT-VR)8,9. The theory and methodology used to determine appro-

priate values for the molecular parameters have been presented in detail in our previous

papers23,51, so that only a brief overview is presented in Section II. We explicitly distin-

guish between the interactions between the different functional groups and present new,

transferable models of sterically hindered (AMP), secondary (DEA), and tertiary (MDEA)

alkanolamine compounds, as pure fluids, in aqueous mixtures, and in aqueous mixtures

with CO2. For completeness, and to correct a number of typographical errors in reference
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23, we also present revised model parameters for MEA and its mixtures with H2O and

CO2. We should note here that the ternary mixtures of alkanolamines, H2O and CO2 are

reactive – i.e., new species are formed (see references52–55 for detailed studies on the class

of reactions involved in these mixtures). The main contribution of our approach resides in

the ability of our ternary association models to describe the fluid phase behaviour of the

mixtures of alkanolamines, H2O and CO2 without explicitly accounting for the complex

reaction mechanisms characteristic of these mixtures. However, speciation calculations can

be carried out within the SAFT-VR framework; this capability is illustrated using the

MEA + CO2 + H2O system. The implicit treatment of the reactions provides a prom-

ising method for early assessment of new compounds, since solvent models that offer a

reasonably good performance can be obtained by estimating a small number of parameters

from vapour-liquid equilbrium data alone. The pure component models are introduced in

Section III, the aqueous mixtures models in Section IV, and the ternary mixture models in

Section V.

II. THEORY, MODELS AND METHODOLOGY

A. Molecular models

Following the SAFT-VR approach, a molecule i is modelled as a single square-well

segment in the case of H2O or a homonuclear chain of mi bonded square-well segments of

hard-core diameter σii when non-spherical molecules are considered (Figure 1). The square-

well interactions are further characterised by an attractive well depth εii and a range λii.

Though the SAFT-VR formalism employed involves fluids of molecules formed from square-

well segments, the approach is generic and can be used for other forms of the segment-

segment interactions such as the Lennard-Jones56, Yukawa57 and Mie58,59 potentials.

A number of off-centre, square-well bonding sites are used to mediate strong, anisotropic

association interactions. In order to fully specify the molecular model, the number of site

types and the number of sites of each type must be specified. The sites are placed at a

reduced distance r∗d = rd/σii = 0.25 from the centre of a segment. The cut-off range between

a site a on a molecule i and a site b on a molecule j is denoted by r∗c;ab,ij = rc;ab,ij/σij . These

parameters define the volume Kab,ij available for site-site bonding60. When two sites come

within a distance r∗c;ab,ij , they interact via a square-well potential with a well depth εHB
ab,ij .

7



The sites are often labelled as e or H, representing either an electronegative atom (or lone

electron pairs) or a hydrogen atom in a molecule, respectively; in such cases only e-H

bonding is allowed.

In order to model mixtures, a number of unlike intermolecular potential parameters also

need to be specified. The arithmetic mean (sometimes referred to as the Lorentz rule 61)

is used to obtain size-related unlike intermolecular parameters such as the unlike segment

size σij = (σii + σjj)/2 and the range of the unlike dispersion interaction λij = (σiiλii +

σjjλjj)/(σii +σjj). These parameters are typically not readjusted at any point. The unlike

dispersion energy between two components i and j is characterised by a strength εij , and

the unlike hydrogen bonding energy between a site a on molecule i and a site b on molecule

j is similarly characterised by a strength εHB
ab,ij and and range r∗c;ab,ij . Although combining

rules for the energetic parameters can be proposed9,62, they are not usually predictive for

hydrogen-bonding interactions. Instead, these are treated as adjustable parameters and

εij and εHB
ab,ij (and r∗c;ab,ij where necessary) are determined by parameter estimation using

experimental fluid-phase equilibrium data.

B. The SAFT-VR Equation of State

The Helmholtz free energy A of a mixture of associating chain molecules can be written

in the usual SAFT form as8,43,63,64

A

NkT
=

AIDEAL

NkT
+

AMONO.

NkT
+

ACHAIN

NkT
+

AASSOC.

NkT
, (1)

where N is the number of molecules, k the Boltzmann constant, and T the absolute temper-

ature. The term AIDEAL corresponds to the ideal free energy of the mixture, and AMONO.,

ACHAIN , and AASSOC. are residual contributions to the free energy due to the repulsive

and attractive (dispersion) interactions between monomeric segments, to the formation of

chains, and to site-site intermolecular association, respectively. For further details of the

SAFT-VR approach and of the specific expressions used, the reader is referred to the ori-

ginal papers8,9. The pressure and chemical potential, required for the solution of phase

equilibrium, are obtained directly using standard thermodynamic relations:

P = −
δA

δV

∣
∣
∣
∣
T,V

and μi = −
δA

δNi

∣
∣
∣
∣
T,V

. (2)
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The interfacial tension is calculated using a density functional theory formulated (DFT)

within SAFT-VR. In an inhomogeneous system, the total Helmholtz energy of the system

becomes a functional, as the number density depends on the position of a particle, so

A[{ρm(r)}] with m = 1 to n, the total number of components). The minimum value of

grand potential functional, Ω[{ρm(r)}], is the equilibrium grand potential of the system

which must satisfy the condition65

δΩ[{ρm(r)}]
δρi(r)

∣
∣
∣
∣
eq

=
δA[{ρm(r)}]

δρi(r)

∣
∣
∣
∣
eq

− μi = 0, (3)

where μi is the chemical potential of component i. Hence, the minimisation of the grand

potential function expressed in equation (3) has two terms: a reference contribution, that

corresponds to the local chemical potential μref and can be obtained from the expressions

for the homogeneous system at the local density, and an attractive contribution, that is

obtained with a perturbative scheme using an average value of the correlation function for

the bulk fluid. The equilibrium density profiles for each component are found by solving

the corresponding Euler-Lagrange relations. Calculations are done in one dimension for a

free planar interface. The details of the numerical aspects of this procedure are described

in a previous publications66–68. Once the equilibrium density profile is known, the surface

tension is determined by using the thermodynamic relation γ = (Ω + PV )/A, where A is

the interfacial area and P is the bulk pressure.

C. Parameter estimation

As is common practice, experimental vapour pressure Pv and saturated liquid density ρl

data are used in the determination of the pure component intermolecular model paramet-

ers. We use of the Chemical Database Service at Daresbury69 to gain access to Detherm,

from where the experimental data employed in this work has been collected. Values for

the SAFT-VR molecular parameters are obtained by fixing the chain length mi (which

characterizes the molecular non-sphericity) to a value between 2.0 and 4.0 and carrying

out optimisations within this interval taking steps of 0.01 in mi. At each of these intervals,

values for the remaining SAFT-VR parameters were obtained by optimising the theoretical

description of the experimental fluid phase equilibrium data from the triple point to 90%

of the critical temperature. Critical and near-critical data are avoided in the estimation,
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as this region cannot be accurately reproduced with analytical equations of state such as

SAFT70. The Maxwell equal area construction using a steepest-descent method71 is used

to solve for the conditions of phase equilibria in the case of the pure-component phase

equilibria. The HELD (P,T) flash algorithm72,73 and the solvers available in the gPROMS

software package74 are used in the case of the phase equilibria for the binary and ternary

mixtures. Typically, the parameter estimation problem renders a number of candidate

models75, with equivalent performance in terms of the deviation from experimental data.

Hence, we search for a parameter set which is physically meaningful that not only has an

acceptable accuracy in representing the vapour liquid equilibria (VLE) data, but that gives

a good prediction of the vapour-liquid interfacial tension and/or enthalpy of vaporisation,

as well as providing a satisfactory performance in mixture calculations. The performance of

the pure models is reported using separate percentage AADs for vapor pressure and liquid

density,

AAD% P =
100

NP

NP∑

i=1

[
P exp

v,i (Ti) − P calc
v,i (Ti)

P exp
v,i (Ti)

]

AAD% ρ =
100

Nρ

Nρ∑

j=1

[
ρexp

l,j (Tj) − ρcalc
l,j (Tj)

ρexp
l,j (Tj)

]

where NP is the number of vapour pressure experimental points, Nρ is the number of

saturated liquid density experimental points, P exp
v,i (Ti) is the experimental vapour pressure

for the ith point, P calc
v,i (Ti) is the calculated vapour pressure at the conditions of the ith

experimental point, ρexp
l,j (Tj) is the experimental saturated liquid density for the jth point

and ρcalc
l,j (Tj) is the calculated saturated liquid density at the conditions of the point jth. The

adjustable unlike binary interaction parameters εij , εHB
ab,ij and r∗c,ab,ij needed to model the

binary mixtures of interest are also determined by comparison to mixture VLE data. In the

case of mixtures, the error in the calculated equilibrium pressure at a given temperature and

liquid composition (AAD% P ) and/ or the error in the calculated equilibrium temperature

at given pressures and liquid conditions (AAD% T ) are reported, as given by the following

expressions

AAD% P =
100

NP

NP∑

i=1

[
P exp

i (Ti, x
L
i ) − P calc

i (Ti, x
L
i )

P exp
i (Ti, xL

i )

]

,
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AAD% T =
100

NT

NT∑

i=1

[
T exp

i (Pi, x
L
i ) − P calc

i (Pi, x
L
i )

P exp
i (Pi, xL

i )

]

.

If available, the error in the composition of the other equilibrium (vapour or liquid)

phase at each Ti or Pi and phase I composition is also reported. Since mole fractions are

between zero and one, an absolute measure of error is given

AAD xII =
1

Nx

Nx∑

i=1

[xII,exp
i − xII,calc

i ].

Readers are referred to an earlier paper23 for the exact functional forms of the objective

function used to estimate the model parameters in this work.

III. PURE COMPONENTS

Pure H2O and CO2 have been investigated in a number of previous studies employing

the SAFT-VR equation of state75–80, and the reader is directed to the the original papers

for details. For completeness, the H2O and CO2 SAFT-VR model parameters are presented

in Table I. In the following subsections, models for the alkanolamines of interest are intro-

duced, as well as parameters for some monofunctional compounds from which association

parameters are transferred to the alkanolamine models.

A. Primary alkanolamines: MEA and AMP (transferring association parameters

from ethanol and ethylamine)

Among the primary alkanolamines, monoethanolamine (MEA) and 2-amino-2-methyl-1-

propanol (AMP) are receiving much attention for carbon capture application. The chemical

structures of MEA and AMP are given in Figures 1a) and 1b), respectively. MEA is con-

sidered to be the benchmark solvent in the context of carbon capture processes 2. An

extensive study on the development of a SAFT-VR model for pure MEA can be found in

a previous paper23. Here, the pure MEA model is presented again for the sake of com-

pleteness and to correct typographical errors. The AMP molecule is a sterically hindered

primary amine that presents a number of theoretical advantages over MEA: AMP reacts

with CO2 to produce a carbamate of relatively low stability which readily hydrolyses to

form a bicarbonate, which makes loadings of up to one mole of CO2 per mole of amine
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possible81; the loaded AMP solvent is also known to require a lower energy of regeneration

and to have superior degradation resistance when compared to MEA81–83.

The intermolecular parameters describing the N-H association between primary amino

groups are transferred from a model of ethylamine (EtNH2)
23, see Figure 1c) for the chem-

ical structure and the corresponding SAFT-VR model. The ethylamine interaction para-

meters51 are given in Table I and a comparison between experimental VLE data and

SAFT-VR description is presented in Figure 2. The SAFT-VR DFT predictions of the

vapour-liquid interfacial tension of ethylamine (shown later in Figure 5) are found to be

in good agreement with experimental values. In the same fashion, association parameters

describing the interaction between the OH groups are transferred from a model of ethanol

(EtOH)23; (see Figure 1d) for the chemical structure and SAFT-VR model, Table I for

the parameter values and Figure 2 for a comparison of the SAFT-VR description with

experiments).

In Figure 1a) the chemical structure of the MEA molecule and the model proposed for use

with SAFT-VR23 are presented. MEA is modelled as a chain molecule, where the hydrogen

bonding interactions are accounted for via the inclusion of six association sites. Two sites

of type e and one site of type H are used to mediate the hydrogen bonding interactions

between the hydroxyl groups. One site of type e∗ and two sites of type H∗ mediate the

hydrogen bonding interactions between the amine groups. Sites e and e∗ represent the lone

pairs of electrons on the oxygen and nitrogen atoms, respectively. Likewise, theH and H∗

sites represent the hydrogen atoms on the hydroxyl and amine groups. The parameters

describing the OH-OH (εHB
eH,MEA,MEA and rc;eH,MEA,MEA) and NH2-NH2 (εHB

e∗H∗,MEA,MEA and

rc;e∗H∗,MEA,MEA) interactions are transferred from ethylamine and ethanol respectively. The

cut-off range (which characterises the volume available for bonding) is transferred in its

reduced form, i.e., r∗c;eH,MEA,MEA, as defined in Section II, rather than rc;eH,MEA,MEA. Only

six other parameters therefore need to be determined for the SAFT-VR model of the MEA

fluid23. The model parameters are given in Tables II and III. The SAFT-VR description

of the vapour-liquid equilibria of MEA are compared against experimental data in Figures

3 and 4, and the predictions for the interfacial tension and enthalpy of vaporization are

shown in Figures 5 and 6. Excellent agreement is found for all of the properties investigated,

particularly for the vapour-liquid interfacial tension and enthalpy of vaporisation, which as

predictions represent a stringent test of the performance of the model.
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The chemical structure of AMP and its proposed SAFT-VR model are presented in

Figure 1b). AMP is modelled as a chain molecule with six association sites 84. As for MEA,

two sites of type e and one site of type H are incorporated to account for the association

interactions between the hydroxyl group, and one site of type e∗ and two sites of type H∗

those between the amino group. Given the scarcity of experimental data available for AMP,

the physical basis of SAFT is exploited by transferring all of the association parameters

from the MEA model previously presented. Hence, only the remaining non-associative

parameters (mAMP, σAMP,AMP, εAMP,AMP and λAMP,AMP) need to be estimated from the

available experimental data85–88. The choice of the final model (see Tables II and IV for

the parameter values) was made based on its performance in correlating the VLE data

(cf. Figures 3 and 4) and describing the vapour-liquid interfacial tension (cf. Figure 5),

although this property was not used in the parameter estimation. Unfortunately, to our

knowledge there are no experimental data for the enthalpy of vaporisation of AMP in the

open literature.

B. Secondary amines: DEA (transferring association parameters from diethyl-

amine)

In order to gain an understanding of the N-H interaction between secondary amine

groups, a SAFT-VR model of diethylamine (DEtA) is developed in the first instance. The

chemical structure of DEtA and the correspoding SAFT-VR model are depicted in Figure

1e). Following the general description provided in section II, diethylamine is modelled as a

chain molecule with two association sites, one site of type e∗ and one site of type H∗. These

sites are used to represent the lone pair of electrons on the nitrogen atom and the hydrogen

atom on the secondary amine group, respectively. The association scheme we have chosen

is consistent with that used in our previous publications23,51, only e∗-H∗ interactions are

permitted.

We discretise the parameter space for the model of diethylamine in terms of the dispersive

and associative energetic parameters εDEtA,DEtA and εHB
e∗H∗,DEtA,DEtA as described in detail

in previous work23,51,75. The fluid phase equilibrium data are obtained from references89–92.

An optimal set of SAFT-VR molecular parameters is presented in table I. The comparison

of the calculated and experimental VLE data is presented in Figure 2, and the SAFT-

VR DFT predictions of the vapour-liquid interfacial tension and enthalpy of vaporisation
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are presented in Figures 5 and 6, respectively. In this way we have developed a set of

parameters which accurately describes the self-association behaviour of a secondary amine

group. The physical basis of the SAFT approach is then exploited, and the parameters are

transferred to a model of DEA.

Following our previous work on MEA, we propose an asymmetric model of DEA. The

chemical structure of DEA and the proposed SAFT-VR model are shown in Figure 1f). The

DEA-DEA association is described by including eight association sites to mediate the OH-

OH, NH-NH and NH-OH hydrogen-bonding interactions. Two association sites of type e

and one of type H are used on each of the hydroxyl functional groups to treat the OH-OH

hydrogen-bonding interactions associated with the lone pairs of electrons on the oxygen

atoms and hydrogen atoms, respectively. The molecular parameters which describe the

OH-OH interactions (εHB
eH,DEA,DEA and rc;eH,DEA,DEA) are transferred from the model of eth-

anol (Table I). A site of type e∗ and a site of type H∗ are used to represent the amine-amine

hydrogen-bonding interactions of the secondary amine group. The molecular parameters

which describe the amine-amine hydrogen-bonding interactions of this group (εHB
e∗H∗,DEA,DEA

and rc;e∗H∗,DEA,DEA) are transferred from the model of diethylamine (Table I). The asymmet-

ric models presented here explicitly acknowledge the fact that the OH-OH (e-H), NH-NH

(e∗-H∗) and NH-OH (e-H∗ and e∗-H) interactions are distinct from each other. In our

model of DEA, only e-H, e∗-H∗, e-H∗ and e∗-H site-site interactions are allowed. The

procedure of transferring the molecular parameters results in the reduction of the number

of parameters that must be estimated from experimental data to eight: mDEA, σDEA,DEA,

εDEA,DEA, λDEA,DEA, εHB
eH∗,DEA,DEA, εHB

e∗H,DEA,DEA, rc;e∗H,DEA,DEA and rc;eH∗,DEA,DEA. Exper-

imental data for the VLE of DEA are obtained from references89–92. The optimal set of

SAFT-VR molecular parameters used to describe the fluid-phase behaviour of DEA are

presented in Tables II and V. A comparison of the calculated and experimental VLE data

is presented in Figures 3 and 4, with the predictions of the vapour-liquid interfacial tension

and enthalpy of vaporisation presented in Figures 5 and 6, respectively.

C. Tertiary amine compound: MDEA

Methyldiethanolamine (MDEA) also finds applications in CO2 capture processes. The

chemical structure of MDEA and the proposed model for use with SAFT-VR are presented

in Figure 1g). Seven sites are included to mediate the hydrogen-bonding interactions of
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this molecule. We use two sites of type e and one of type H to represent each of the

hydroxyl functional groups, with a further site of type e∗ representing the lone pair of

electrons on the nitrogen atom of the tertiary amine group. Only e-H and e∗-H site-site

interactions are permitted in this model. The parameters describing the OH-OH (e-H)

hydrogen-bonding interactions (εHB
eH,MDEA,MDEA and rc;eH,MDEA,MDEA) are transferred from

the model of ethanol23, reducing the number of parameters which must estimated from the

experimental data to six (mMDEA, σMDEA,MDEA, εMDEA,MDEA, λMDEA,MDEA, εHB
e∗H,MDEA,MDEA

and rc;e∗H,MDEA,MDEA). The experimental data used in the estimation procedure can be

found in references90,93,94. The optimal set of SAFT-VR molecular parameters used to

describe the fluid-phase behaviour of MDEA are presented in Tables II and VI. The

description of the VLE with SAFT-VR is shown in Figures 3 and 4, with the prediction of

the vapour-liquid interfacial tension presented in Figure 5.

IV. AQUEOUS MIXTURES

Binary mixtures of associating compounds are often highly non-ideal, and accurate mod-

els are often difficult to develop. Frequently, a number of temperature-dependent bin-

ary interaction parameters are required, and assigning values to these parameters can be

hampered in the event of insufficient experimental data. In our work, we use experimental

VLE data to determine the energetic unlike interaction parameters: εij and εHB
ab,ij . All other

unlike parameters characterising the binary mixtures (σij , λij and rc;ab,ij) are calculated

using arithmetic combining rules of the Lorentz type9,61.

We build upon previous success in developing an asymmetric model of aqueous mixtures

of MEA23 to develop models for aqueous mixtures of the other multifunctional amines: the

unlike interaction parameters which describe the hydrogen bonding interactions between

H2O and the hydroxyl groups on ethanol (εHB
eH,EtOH,H2O and rc;eH,EtOH,H2O) are transferred

to each of the aqueous mixtures of alkanolamines; likewise, the parameters characterising

the hydrogen bonding interactions between H2O and the primary (NH2) and secondary

(NH) amine groups are transferred from models of ethylamine + H2O and diethylamine

+ H2O mixtures, respectively. In this way, we reduce the number of adjustable binary

interaction parameters required to describe the fluid-phase behaviour of the asymmetric

mixture models to a maximum of one – the unlike dispersion energy parameter (εij) in
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the case of the aqueous MEA, AMP and DEA mixtures, and the unlike hydrogen-bonding

interaction (εHB
e∗H,MDEA,H2O) in the case of MDEA + H2O.

A. Aqueous mixtures of primary amines

Three adjustable unlike energy interaction parameters are required to model the MEA

+ H2O mixture. The hydrogen bonding energy between water and the hydroxyl group

of MEA (εHB
eH,MEA,H2O = εHB

He,MEA,H2O) is transferred from that of the mixture of ethanol

and water. Since the hydrogen-bonding between water and the amine group of MEA

(εHB
e∗H,MEA,H2O = εHB

H∗e,MEA,H2O) is also transferred from a model of ethylamine and water,

only the unlike dispersion interaction between MEA and water (εMEA−H2O) needs to be

estimated from experimental data. Details of the estimation procedure are given in previous

work23. The binary interaction parameters for the aqueous mixture of MEA are provided

in VII. The model describes the mixture behaviour with an accuracy of AAD% = 2.03% in

temperature and pressure and AAD = 0.027 in vapour phase composition. The SAFT-VR

calculations of isobaric and isothermal slices of the vapour-liquid fluid-phase equilibria for

MEA + H2O are compared with the corresponding experimental data in Figure 7. We

note that using our approach, it has been possible to retain a great deal of the microscopic

detail characterising the mixture, whilst only utilising one adjustable unlike-interaction

parameter to optimise the description of the fluid-phase behaviour.

The interaction parameters for the AMP + H2O model are obtained in an analog-

ous way: the two different hydrogen-bonding interactions (εHB
eH,AMP,H2O = εHB

He,AMP,H2O and

εHB
e∗H,AMP,H2O = εHB

H∗e,AMP,H2O) are transferred from models of aqueous mixtures of ethanol

and of ethylamine, respectively. As a consequence, only the unlike dispersive interaction

(εH2O,AMP) needs to be estimated from VLE experimental data86; isobaric data at 0.0667

MPa, 0.08 MPa and 0.1013 MPa are used. The model parameters are given in Table VII,

and the comparison of the SAFT-VR description and the experimental data can be seen in

Figure 8a). The ADD% = 0.37% in temperature and the AAD = 0.017 in vapour pressure

mole fraction.
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B. Aqueous mixture of DEA

In order to gain an understanding of the hydrogen-bonding interactions between a sec-

ondary amine group (NH) and H2O, we first consider aqueous mixtures of diethylamine.

The unlike interaction energy parameters εDEtA,H2O and εHB
e∗H,DEtA,H2O are estimated from

experimental VLE data95 at T = 311.5 K. The final values of the unlike interaction para-

meters are presented in Table VII. The theoretical calculations are compared with the

experimental data in Figure 8b) at T = 311.5 K and 322.25 K. The parameters describing

the NH2-H2O interaction obtained in this manner for aqueous mixtures of diethylamine are

then transferred to the aqueous solutions of DEA.

In modelling a mixture of DEA and H2O, we transfer the unlike interaction parameters

describing the hydrogen-bonding interactions between the hydroxyl group and H 2O and the

secondary amine group and H2O from previous work on EtOH + H2O and DEtA + H2O,

respectively. Thus, only the value for the unlike dispersion interaction (εDEA,H2O) remains

to be estimated from the experimental data96,97. The final values of the unlike interaction

parameters are presented in Table VII and the corresponding description of the VLE of

this mixture is shown in Figure 8c). The coexistence temperature are described with an

AAD% = 1.55% and the vapour phase mole fractions an AAD = 0.003.

C. Aqueous mixtures of tertiary amines

In order to gain an understanding of the nature of the hydrogen-bonding interactions

between a tertiary amine group and H2O, we now consider an aqueous mixture of MDEA.

We transfer the SAFT-VR model parameters describing the hydrogen-bonding interactions

between the hydroxyl groups and water from EtOH+H2O as we have explained for the other

alkanolamines . We are then able to describe accurately the fluid-phase behaviour of the

MDEA + H2O mixture by adjusting only the unlike interaction parameter which charac-

terises the hydrogen bonding between the tertiary amine group and H2O (εHB
e∗H,MDEA,H2O);

the unlike dispersion interactions are described well by the value of εMDEA,H2O given by

the Berthelot rule (kij=0)61. Experimental data from Voutsas et al.98 is employed in the

parameter estimation. The final values of the unlike interaction parameters are presented

in Table VII and the comparison of the SAFT-VR calculations with the experimental data
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is shown in Figure 8d). A good agreement is achieved with an AAD% = 2.8% in the

coexistence temperature.

V. TERNARY MIXTURES

In the ternary mixtures of alkanolamines, water and carbon dioxide, new species are

formed via complex reaction mechanisms52–55. The models developed here for use within

the SAFT-VR approach describe the phase behaviour of these mixtures without explicitly

treating the reactions or the new species. The reactions are instead accounted for with the

incorporation of association sites on the CO2 molecule to mediate the interactions with the

amine groups; depending on the alkanolamine and the stoichiometry of the overall reaction,

one or two sites are assumed to be active. This implicit treatment of the reactions provides

a convenient and straightforward method for the early assessment of new solvents for use in

the context of carbon capture processes, as only a limited number of parameters from have

to be estimated VLE data to develop the models. It is important to note here that whilst

reactions mechanisms or products do not need to be postulated a priori, the SAFT-VR

theory can provide valuable information on the degree of speciation of the mixture being

studied. This is handled through the analysis of the fraction of sites not bonded (the reader

is referred to the SAFT-VR original papers8,9 for details), and illustrated for the MEA +

CO2 + H2O system.

There are no experimental data for the binary mixtures of CO2 and the alkanolamines

(MEA, AMP, DEA and MDEA) that are relevant to this investigation. However, VLE

data are available for the ternary aqueous mixtures. These data are used to estimate the

unlike binary parameters characterising the interactions of CO2 with the alkanolamines.

The unlike binary interaction parameters describing the H2O + CO2 mixture are taken

from previous work23 and are included in Table VII for completeness.

A. MEA + CO2 + H2O

The MEA + CO2 + H2O model proposed here introduces a number of novelties with

regard to that presented in earlier work23. Firstly, the interaction range of the association

sites (rc;ab,MEA,CO2) is considered as a new adjustable parameter. As a second modification,

the interactions between the amino group in the MEA molecule and the two acceptor sites

of the CO2 molecule (labelled α1 and α2) are no longer assumed to be characterised by
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symmetrical parameters (i.e., εHB
e∗α1,MEA,CO2

is not necessarily the same as εHB
e∗α2,MEA,CO2

, and

neither are rc;e∗α1,MEA,CO2 and rc;e∗α2,MEA,CO2). Hence, five parameters are now required

to describe the MEA + CO2 binary interactions: εMEA,CO2 , εHB
e∗α1,MEA,CO2

, εHB
e∗α2,MEA,CO2

,

rc;e∗α1,MEA,CO2 and rc;e∗α2,MEA,CO2 . Finally, experimental data at high temperatures (up to

393 K) are included in the estimation of the model parameters (previously only data at 313

K were used). We have found that these modifications lead to a marked improvement of the

performance of the description of the VLE, particulary at high temperatures. The model

parameters are obtained by estimation of the data for five isotherms, ranging from 313 K

to 393 K, with a concentration of MEA of 30 wt%99. The values of the unlike interaction

parameters are presented in Table VIII. A comparison of the SAFT-VR description of the

VLE and the experimental data for three isotherms (313 K, 353 K and 393 K) is shown in

Figure 9a). The partial pressure of CO2 is plotted as a function of the CO2 loading, which

is defined as the moles of CO2 absorbed in the liquid phase per mole of the amine.

The analysis of the degree of speciation for this system at 313 K can be found in

Figure 9b). The main equilibrium reactions occurring in this system are the formation

of carbamate (MEACOO−) and bicarbonate (HCO−
3 )52. In our model, the concentration

of carbamate is equivalent to the concentration of CO2 molecules bonded at both sites,

while the concentration of bicarbonate can be inferred from the concentration of CO 2

molecules with only one bond, given that the model does not allow for CO2-H2O or CO2-

CO2 association,

[MEACOO−] = xCO2 [(1 − Xα1,CO2)(1 − Xα2,CO2) (4)

[HCO−
3 ] = xCO2 [Xα1,CO2 + Xα2,CO2 ] (5)

where xCO2 is the mole fraction of CO2 in the liquid phase and Xα,i is the fraction of

molecules of component i not bonded at the site α. The SAFT-VR predictions for both

species are in excellent agreement with the experimental data from Bottinger et al. 100. For

the sake of brevity, these results are only presented for the MEA + CO2 + H2O system,

although the speciation analysis is general and could be applied to the remainder mixtures.

B. AMP + CO2 + H2O

The stoichiometry of the reaction between AMP and CO2 allows for loadings of up to

one molecule of CO2 per molecule of AMP. To account for this, only one of the acceptor
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sites of the CO2 molecule (α1) is considered to be active (i.e., the interaction energy with

the other site is disabled, εHB
e∗α2,AMP,CO2

= 0). The reader is directed to previous work51 for

a thorough discussion of this point. Consequently, only three interaction parameters need

to be determined for this mixture: εAMP,CO2 , εHB
e∗α1,AMP,CO2

, and rc;e∗α1,AMP,CO2 . The VLE

for three isotherms (313 K, 333 K and 353 K) at two different concentrations of AMP (17.8

and 35.0 wt%)101 are used to estimate the model parameters. The optimal values of the

parameters are given in Table VIII. A comparison of the calculated phase behaviour and

experimental data for AMP concentrations of 17.8 and 35.0 %wt at different temperatures

is presented in Figure 10. The agreement is good particularly for low CO 2 loadings and low

temperatures; larger deviations are seen for the higher concentration of the amine at higher

CO2 loadings and higher temperatures. We believe this indicates the limits of applicability

of the assumption of implicit reactions.

C. DEA + CO2 + H2O

The strategy employed for the MEA + CO2 + H2O model is found to yield the best

results in this case, i.e., the interactions between the amino group of DEA and the two

acceptor sites of the CO2 molecule are not assumed to be described by the same set of

parameters. As a consequence, our SAFT-VR description of DEA + CO2 + H2O requires

the estimation of five parameters, which are determined by simultaneously estimating to

five isotherms with temperatures from 298 K to 393 K and DEA concentrations of 20.6,

35.4 and 49.7 wt%102. The model parameters are given in Table VIII. The results of the

SAFT-VR description can be seen in Figure 11, where one can see a good overall agreement

between the calculations and the experimental data, with larger deviations at the higher

temperatures.

D. MDEA + CO2 + H2O

It is known that MDEA, as a tertiary amine, does not react with CO2 to form a car-

bamate, the bicarbonate being formed instead. A detailed discussion of the corresponding

reactions in this system has been made by Blauwhoff et al.52. The resulting chemical

equilibrium results in loadings of up to one molecule of CO2 per molecule of MDEA being

possible, which is accounted for in our SAFT-VR model by considering that only the α1 site
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of the CO2 molecule is active, as for AMP. The three parameters that are required to model

the interaction between CO2 and the amine for MDEA + CO2 + H2O are obtained by es-

timation from experimental data of the VLE for six isotherms with temperatures between

298 K and 413 K and MDEA concentrations ranging from 19 to 53 wt%103,104. The model

parameters are presented in Table VIII. The adequacy of the SAFT-VR description is

apparent from the comparison of the calculated VLE with the experimental data over a

range of temperatures for MDEA concentrations of 19, 25 and 32 wt% presented in Figure

12. Figure 12b) constitutes a good example of the predictive capabilities of the SAFT-VR

approach, since the experimental data shown104 have not been used for the parameter

estimation.

VI. DISCUSSION AND CONCLUDING REMARKS

We have developed detailed microscopic models for the description of the vapour-liquid

equilibria of multifunctional amines that are of interest in the context of CO 2 capture. Our

approach preserves a sufficient degree of molecular detail, while minimising the dimension-

ality of the model parameterization and associated optimisation problem. A key advantage

of the SAFT-VR approach is its molecular basis, so that features of the intermolecular

interactions of the multifunctional compounds studied here can be transferred from the ap-

propriate groups of related molecules. In modelling MEA, AMP, DEA and MDEA, we have

been able to transfer the hydrogen bonding parameters for the hydroxyl-hydroxyl interac-

tions from those of ethanol and those for the amine-amine interactions from ethylamine

and diethylamine. As a consequence, only the strength of the amine-hydroxyl hydrogen-

bonding interactions for the alkanolamines needs to be determined from pure component

VLE data (in addition to the square-well parameters characterising the segment diameters

and dispersion energy and range). As has been previously observed23, the set of molecular

parameters which provide the optimal correlation of coexistence data is not necessarily

the most physically adequate model. In addition to a correlation of vapour-liquid equilib-

rium data, we therefore also rely on the ability of the models to provide good predictions

of the vapour-liquid interfacial tension and enthalpy of vaporisation; this allows for the

discrimination of “optimal” candidate models on a firm physical basis.

These models are used to study the fluid phase equilibria of aqueous solutions of MEA,

AMP, DEA and MDEA. The unlike alkanolamine - water association interaction parameters

can be transferred from those obtained from aqueous mixtures of ethanol, ethylamine,
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or diethylamine. In describing these mixtures, we note that only one adjustable, unlike

interaction parameter is used: the unlike dispersion interaction energy in the case of the

aqueous mixtures of MEA, AMP and DEA; and the hydrogen-bonding energy between the

tertiary amine functional group and H2O in the case of MDEA + H2O. We emphasise the

importance of reducing the number of adjustable parameters required to describe the phase

behaviour of these mixtures in light of the fact that these data are often quite scarce, and

can be subject to a significant degree of uncertainty.

Finally, the fluid phase behaviour of the reactive aqueous mixtures of alkanolamines and

CO2 is modelled following the approach used in previous work23,51, to test the applicability

of the assumption of implicitly modelling the reaction equilibria with physical models of

association. An accurate description of these complex mixtures is of paramount importance

for the design and optimisation of carbon capture processes. The stochiometry of the

reactions between the alkanolamines and CO2 is preserved by changing the number of

acceptor sites that are active on the CO2 molecule. The intermolecular model parameters

characterising the interaction of these reactive sites on CO2 with the alkanolamines are

determined by estimation using the experimental data of the ternary mixture. Up to five

temperature-independent parameters are required to provide a good description of the VLE

for some of the mixtures. For some of the amine solvents, the SAFT-VR models can then be

used to describe the VLE over large temperature and CO2 concentration ranges; specifically

in the range of interest of operation for absorption/desorption columns. Additionally,

predictions of the degree of speciation in the mixture of MEA + CO2 + H2O are compared

with experimental data of the carbamate and bicarbonate concentrations, and excellent

agreement is found. This provides an understanding of the relative proportions of the extent

of reaction of CO2, and supports the case for the use of a physical approach to model the

reactions of these systems. In some cases, particulary MEA and AMP, we believe the models

could be refined by employing a temperature-dependent unlike association energy (εij).

Another alternative to improve the description would be to include an explicit treatment

of the charged species21,22, and/or treating the possibility of cooperative association where

the association energy depends of the association state of the species105.

The development of a transferable approach based on the contributions to the free energy

of each individual functional group and their interactions is one of the particular strengths

of our approach as it provides an adequate representation of the absorption of CO 2 without

requiring extensive experimental data. This approach can be seen as an intermediate step

toward a full group contribution treatment such as the SAFT-γ approach106–108. Our
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transferable model parameters for primary, secondary, and tertiary alkanolamines, and

their aqueous mixtures with CO2, provide us with a very convenient platform from which

to investigate the phase behaviour of other aqueous alkanolamine mixtures of practical and

scientific interest, to embark on the challenges inherent in solvent and process design in the

context of carbon capture and storage.
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(Å

)
ε i

i/
k
(K

)
λ

ii
e-

si
te

s
H

-s
it
es

α
1
-s

it
es

α
2
-s

it
es

εH
B

eH
,i
i/

k
(K

)
r c

;e
H

,i
i(

Å
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Table II: The parameters characterising the pure component intermolecular potential models of

MEA, AMP, DEA and MDEA (the number of segments mi, the diameter of the spherical core

σii, the depth εii and range λii of the dispersive square well and number and type of association

sites). The percentage absolute average deviation AAD%, and separate percentage AADs for

vapor pressure (AAD% P ) and liquid density (AAD% ρ) are employed to assess the quality of the

description. All like site-site interactions are equal to zero (εHB
ee,ii = εHB

HH,ii = εHB
e∗e∗,ii = εHB

H∗H∗,ii =

0). Note that the sites of the amino groups e and H refer to e∗ and H∗ in the text.

i mii σii (Å) εii/k(K) λii e-sites H-sites e∗-sites H∗-sites AAD% AAD% P AAD% ρ

MEA 2 3.57229a 305.000 1.58280 2 1 1 1 2.41 3.58 0.26

AMP 2.29 3.99053 328.065 1.48043 2 1 1 2 0.29 0.6 0.07

DEA 2.71 3.72439 211.378 1.59433 4 2 1 1 1.87 4.99 0.11

MDEA 2.49 4.03836 210.106 1.75471 4 2 1 0 0.47 3.65 0.1

aIn our previous work, a value of 3.52779 was erroneously given.

Table III: The site-site association energies εHB
ab,MEA,MEA and range parameter rc;ab,MEA,MEA for

the asymmetric model of MEA (Figure 1a).

εHB
ab,MEA,MEA/k (K) rc;ab,(MEA) (Å)

b\a e H e∗ H∗ e H e∗ H∗

e 0 2357.79 0 900.00 0 2.08979 0 2.65064

H 2357.79 0 550.00 0 2.08979 0 2.65064 0

e∗ 0 550.00 0 960.00 0 2.65064 0 2.32894

H∗ 900.0 0 960.00 0 2.65064 0 2.32894 0
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Table IV: The site-site association energies εHB
ab,AMP,AMP and range parameter rc;ab,AMP,AMP for

the asymmetric model of AMP (Figure 1b).

εHB
ab,AMP,AMP/k (K) rc;ab,AMP,AMP (Å)

b\a e H e∗ H∗ e H e∗ H∗

e 0 2357.79 0 900.00 0 2.33446 0 2.96097

H 2357.79 0 550.00 0 2.33446 0 2.96097 0

e∗ 0 550.00 0 960.00 0 2.96097 0 2.60161

H∗ 900.00 0 960.00 0 2.96097 0 2.60161 0

Table V: The site-site association energies εHB
ab,DEA,DEA and range parameter rc;ab,DEA,DEA for the

asymmetric model of DEA (Figure 1f ).

εHB
ab,DEA,DEA/k (K) rc;ab,DEA,DEA (Å)

b\a e H e∗ H∗ e H e∗ H∗

e 0 2357.79 0 1093.39 0 2.17877 0 3.28006

H 2357.79 0 2737.90 0 2.17877 0 2.62856 0

e∗ 0 2737.90 0 780.00 0 2.62856 0 2.65771

H∗ 1093.39 0 780.00 0 3.28006 0 2.65771 0

Table VI: The site-site association energies εHB
ab,MDEA,MDEA and range parameter rc;ab,MDEA,MDEA

for the asymmetric model of MDEA (Figure 1g).

εHB
ab,MDEA,MDEA/k (K) rc;ab,MDEA,MDEA(Å)

b\a e H e∗ e H e∗

e 0 2357.79 0 0 2.36244 0

H 2357.79 0 1689.88 2.36244 0 3.31205

e∗ 0 1689.88 0 0 3.31205 0

34



Table VII: Binary interaction parameters for aqueous mixtures of MEA, AMP, DEA, MDEA,

EtOH, EtNH2, DEtA and CO2. Here, εij characterises the strength of the dispersion interaction

between molecules of types i and j, and εHB
ab,ij and rc,ab,ij the strength and range of the association

between sites a and b of molecules i and j. The unlike association between sites of the same type

is assumed to be symmetric, i.e., εHB
eH,ij = εHB

He,ij and εHB
e∗H,ij = εHB

H∗e,ij .

i + j εij/k(K) εHB
eH,ij/k(K) εHB

e∗H,ij/k(K) rc;eH,ij(Å) rc;e∗H,ij(Å)

MEA + H2O 273.373 1780.71 1517.10 2.10763 a 2.22626b

AMP + H2O 292.733 1780.71 1517.10 2.21340 2.33264

DEA + H2O 275.855 1780.71 1250.00 2.14735 2.39142

MDEA + H2O 229.187 1780.71 1800.00 2.22547 2.71327

EtOH + H2O 252.870 1780.71 0 2.14374 0

EtNH2 + H2O 277.690 0 1517.11 0 2.25215

DiEtNH + H2O 292.500 0 1250.00 0 2.41273

CO2 + H2O 224.404 0 0 0 0

aIn our previous work, a value of 2.14374 was erroneously given.
bIn our previous work, a value of 2.25215 was erroneously given.

Table VIII: Binary interaction parameters for the mixtures of MEA, AMP, DEA, MDEA with

CO2. Here, εij characterises the strength of the dispersion interaction between molecules of types

i and j, and εHB
ab,ij and rc,ab,ij the strength and range respectively of the association between sites

a and b of molecules i and j. The unlike association between sites of the same type is assumed to

be symmetric, i.e., εHB
ab,ij = εHB

ba,ij .

i + j εij/k εHB
e∗α1,ij/k(K) εHB

e∗α2,ij/k(K) rc;e∗α1,ij(Å) rc;e∗α2,ij(Å)

MEA + CO2 121.87 5200.0 3982.66 1.97978 1.96999

AMP + CO2 153.71 6405.9 0 1.80000 0

DEA + CO2 160.64 4448.2 5862.64 1.85000 1.85000

MDEA + CO2 121.46 6253.0 0 1.85700 0
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Figure 1: Chemical formulae and schematic representation of the SAFT-VR molecular

models for the compounds studied in this work. Different association site types are

represented by different labels (e, e∗, H, H∗, α1, and α2). a) MEA, b) AMP, c) EtNH2, d)

EtOH, e) DEtA, f) DEA, g) MDEA, h) H2O, and i) CO2.

Figure 2: Experimental data (symbols) for EtNH2, EtOH and DEtA are compared with

the calculated values obtained using the proposed models (continuous curves) with the

SAFT-VR equation-of-state: a) Saturated vapor pressures. The Clausius-Clapeyron

representation is presented, as the low temperature region is more easily observed in this

projection. b) Coexistence densities.

Figure 3: Clausius-Clapeyron representation of the experimental saturated vapour pres-

sures (symbols) for a) MEA, b) AMP, c) DEA and d) MDEA compared to the calculated

values obtained using the proposed models (continuous curves) with the SAFT-VR

equation-of-state.

Figure 4: Experimental coexistence densities ρ (symbols), for MEA, AMP, DEA and

MDEA are compared with the calculated values obtained using the proposed models

(continuous curves) with the SAFT-VR equation-of-state.

Figure 5: Experimental vapour-liquid interfacial tensions γ (symbols) of a) MEA, b)

AMP, c) DEA, d) MDEA, e) DEtA and f) EtNH2 are compared with the predicted

values obtained using the proposed models (continuous curves) with the SAFT-VR

DFT approach66–68. The predictions for the interfacial tension are presented for all the

compounds for which experimental data69 is available.

Figure 6: Experimental enthalpies of vaporisation, ΔHfg, (symbols)69 of a) MEA, b)

DEA and c) DiEtNH are compared with the predicted values obtained using the proposed

models (continuous curves) with the SAFT-VR approach.

Figure 7: a) Isobaric temperature-composition Tx slices of vapour-liquid equilibrium of

an aqueous mixture of MEA at pressures of 0.2242 MPa (red squares), 0.1013 MPa (black

diamonds) and 0.06666 MPa (blue circles). b) Isothermal pressure-composition Px slices

of vapour-liquid equilibrium of an aqueous mixture of MEA at temperatures of 298 K (red
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squares), 343 K (black diamonds) and 364 K (blue circles). The symbols correspond to

the experimental69 data and the curves to the SAFT-VR calculations.

Figure 8: a) Isobaric temperature-composition Tx slices of the vapour-liquid equilibrium

of an aqueous mixture of AMP at pressures of 0.101 MPa (red squares), 0.08 MPa (black

diamonds) and 0.0667 MPa (blue circles). b) Isothermal pressure-composition Px slices of

the vapour-liquid equilibrium of diethylamine and water at T = 311.5 K (black diamonds)

and T = 322.25 K (red squares). c) Isobaric temperature-composition Tx slices of the

vapour-liquid equilibrium of an aqueous mixture of DEA at P = 0.007 MPa (black

diamonds) and P = 0.0267 MPa (red squares). d) Isobaric temperature-composition Tx

slices of the vapour-liquid equilibrium of an aqueous mixture of MDEA at P = 0.0399 MPa

(blue circles), P = 0.0533 MPa (black diamonds), and P = 0.0667 MPa (red squares).

The symbols correspond to the experimental data86,95–98 and the curves to the SAFT-VR

calculations.

Figure 9: a) Isotherms of projections of the pressure-loading vapour-liquid equilibrium

of the ternary mixture MEA + H2O + CO2 with a concentration of MEA in the liquid

phase of 30 wt% , at T = 313 K, T = 353 K, and T = 393 K. b) Predicted mole fraction

of carbamate and bicarbonate in the ternary mixture of MEA + H2O + CO2 with a

concentration of MEA in the liquid phase of 30 wt% , at T = 313 K. The symbols (blue

squares for carbamate and red diamonds for bicarbonate) correspond to the experimental

data99,100 and the curves (continuous blue line for carbamate and dashed red line for

bicarbonate) to the SAFT-VR calculations. The CO2 loading (θCO2) is defined as the

moles of CO2 absorbed in the liquid phase per mole of the amine.

Figure 10: Isotherms of projections of the pressure-loading vapour-liquid equilibrium of

the ternary mixture AMP + H2O + CO2, at T = 313 K, T = 333 K, and T = 353 K.

a) Concentration of AMP in the liquid phase of 17 wt%. b) Concentration of AMP in

the liquid phase of 35 wt%. The symbols correspond to the experimental data 101 and the

curves to the SAFT-VR calculations.

Figure 11: Isotherms of projections of the pressure-loading vapour-liquid equilibrium of

the ternary mixture DEA + H2O + CO2, at T = 298 K, T = 323 K, T = 348 K, T =
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373 K, and T = 393 K. a) Concentration of DEA in the liquid phase of 20.6 wt%. b)

Concentration of DEA in the liquid phase of 35.4 wt%. The symbols correspond to the

experimental data102 and the curves to the SAFT-VR calculations.

Figure 12: Isotherms of projections of the pressure-loading vapour-liquid equilibrium of

the ternary mixture MDEA + H2O + CO2. The symbols correspond to the experimental

data103,104 and the curves to the SAFT-VR calculations. a) Concentration of MDEA in the

liquid phase of 19 wt% at T = 313 K, T = 333 K, T = 373 K, T = 393 K, and T = 413K.

c) Concentration of MDEA in the liquid phase of 25 wt% at T = 313 K and T = 348 K.

These calculations are predictions, as these experimental data have not been used in the

parameter estimation. b) Concentration of MDEA in the liquid phase of 32 wt% at T =

313 K, T = 333 K, T = 373 K, T = 393K, and T = 413K.
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