The combination of Peptide YY\textsubscript{3-36} with GLP-1\textsubscript{7-36} amide causes an increase in first-phase insulin secretion in response to IV glucose

Tricia M. Tan1,*, Victoria Salem1,*, Rachel C. Troke1, Ali Alsafi1, Benjamin C.T. Field1, Akila De Silva1, Shivani Misra1, Kevin C.R. Baynes1, Mandy Donaldson1, James Minnion1, Mohammad A. Ghatei1, Ian F. Godsland2, Stephen R. Bloom1

1Section of Investigative Medicine, Imperial College London, UK; 2Endocrinology and Metabolism, Imperial College London, UK;

Context: The combination of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) has been proposed as a potential treatment for diabetes and obesity. However, the combined effects of these hormones, PYY\textsubscript{3-36} and GLP-1\textsubscript{7-36} amide, on glucose homeostasis are unknown.

Objective: To investigate the acute effects of PYY\textsubscript{3-36} and GLP-1\textsubscript{7-36} amide, individually and in combination, on insulin secretion and sensitivity.

Design and setting: Using a frequently-sampled IV glucose tolerance test (FSIVGTT) and minimal modeling, this study measured the effects of PYY\textsubscript{3-36} alone, GLP-1\textsubscript{7-36} amide alone, and a combination of PYY\textsubscript{3-36} and GLP-1\textsubscript{7-36} amide on acute insulin response to glucose (AIRg) and insulin sensitivity (S\textsubscript{i}) in 14 overweight human volunteers, studied in a clinical research facility.

Results: PYY\textsubscript{3-36} alone caused a small but non-significant increase in AIRg. GLP-1\textsubscript{7-36} amide alone and the combination of PYY\textsubscript{3-36} and GLP-1\textsubscript{7-36} amide did increase AIRg significantly. No significant differences in S\textsubscript{i} were observed with any intervention.

Conclusions: PYY\textsubscript{3-36} does not have any significant acute effects on first-phase insulin secretion or insulin sensitivity when tested using an FSIVGTT. Both GLP-1\textsubscript{7-36} amide alone and the combination of PYY\textsubscript{3-36} and GLP-1\textsubscript{7-36} amide increase first-phase insulin secretion. There does not appear to be any additive or synergistic effect between PYY\textsubscript{3-36} and GLP-1\textsubscript{7-36} amide on first-phase insulin secretion. Neither hormone alone nor the combination had any significant effects on insulin sensitivity.

The obesity pandemic has become a priority global health concern. By 2015, the World Health Organisation predicts 4 billion adults will be overweight and over 700 million will be obese. This has predictably resulted in a rise in prevalence of the comorbidities of obesity, including type 2 diabetes, cardiovascular disease, hypertension, cancer, obstructive sleep apnoea, all resulting in a reduced life expectancy (1, 2). Bariatric surgery, for example the Roux-en-Y gastric bypass, is currently the most effective treatment, leading to a sustained 25%–30% weight loss (3–5). It is well documented that gastric bypass surgery also induces a rapid and prolonged improvement in glucose levels, with over 40% of operated subjects achieving a complete remission of their diabetes (6). At present, the mechanisms for the favorable changes in body weight and glycaemia are unclear, although alterations in

Abbreviations:

ISSN Print 0021-972X ISSN Online 1945-7197
Printed in U.S.A.
This article has been published under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright for this article is retained by the author(s). Author(s) grant(s) the Endocrine Society the exclusive right to publish the article and identify itself as the original publisher.
Received April 23, 2014. Accepted August 7, 2014.
doi: 10.1210/jc.2014-2143 J Clin Endocrinol Metab jcem.endojournals.org
peptide gut hormone secretion—in particular elevated postprandial levels of PYY and GLP-1—are thought to play an important role (7, 8). As a result, analogues of PYY and GLP-1 are being developed as treatments for obesity and diabetes, although the doses that can be given are limited by side effects, principally nausea (9, 10). Low-dose combinations of PYY and GLP-1 represent an attractive route to achieving better weight lowering efficacy without nausea: we have previously shown that PYY\textsubscript{3–36} coinfused with GLP-1\textsubscript{7–36 amide} reduces appetite and food intake in an additive fashion without adverse effects (11, 12).

GLP-1 is well established as an incretin hormone with insulino tropic effects (13). In contrast, the PP-fold peptides neuropeptide Y (NPY) and PYY have differing effects on insulin secretion. NPY, acting at the Y1 receptor, inhibits insulin release from islets (14, 15), and sympathetic nerve terminals on pancreatic islets release both NPY and norepinephrine to produce inhibition of insulin secretion (16). Consistent with this, Y1 receptor knockout mice exhibit a basal hyperinsulinemia (17). PYY\textsubscript{1–36} is the full-length version of PYY that is able to activate Y1 receptors, similarly has insulino-statogenic effects in rodents and dogs (18–21), although it appears to increase insulin secretion after an ad libitum meal when infused into humans at 1.6 pmol/kg/min (22). Unlike NPY and PYY\textsubscript{1–36}, there is relatively little known about the effects of PYY\textsubscript{3–36} on glucose metabolism. PYY\textsubscript{3–36} is considerably less active at the Y1 receptor but fully active at the Y2 receptor. Since the Y2 receptor has been shown to act as a presynaptic auto-inhibitor of sympathetic transmission (23), Y2 activation might not affect or could even cause disinhibition of insulin release. In animal studies, administration of PYY\textsubscript{3–36} was associated with increased glucose disposal under hyperinsulinaemic conditions, i.e., an increase in insulin sensitivity (24). In humans, Sloth et al reported that an acute IV infusion of PYY\textsubscript{3–36} (at a dose of 0.2 pmol/kg/min, achieving mean levels of 76 ± 23 pmol/L) was able to increase the postprandial insulin response to an ad libitum meal, as judged by AUC for insulin concentration (22).

If low-dose combinations of PYY\textsubscript{3–36} and GLP-1\textsubscript{7–36 amide} are to be used as future treatments for obesity and/or diabetes, it is important to establish their effects on glucose homeostasis. We therefore decided to investigate the effects of PYY\textsubscript{3–36} and GLP-1\textsubscript{7–36 amide} individually and in combination, on insulin secretion and sensitivity in fasted, overweight humans.

Materials and Methods

Peptides

PYY\textsubscript{3–36} and GLP-1\textsubscript{7–36 amide} were purchased from Bachem Ltd. (St Helens, Merseyside, UK). Following initial high fidelity synthesis, the peptide hormones underwent purification by high resolution high performance liquid chromatography. Peptide compositions and purity were verified by quantitative amino acid analysis.

Sterile 0.9% (w/v) saline was purchased from Bayer (Hawthornd Heath, UK). Using an aseptic technique in a laminar flow cabinet, PYY\textsubscript{3–36} and GLP-1\textsubscript{7–36 amide} were separately dissolved in 0.9% saline, aliquoted into vials and freeze dried. Represen-tative PYY\textsubscript{3–36} and GLP-1\textsubscript{7–36 amide} vials were sterile after culture for seven days (Department of Microbiology, Hammersmith Hospital, London), and endotoxin levels as measured by the Limulus Amoebocyte Lysate test (Associates of Cape Cod, Liverpool, UK) were within the safe range for human infusion. Further representative vials of both PYY\textsubscript{3–36} and GLP-1\textsubscript{7–36 amide} were randomly selected and sent for amino acid analysis by Alta Bioscience (Birmingham, UK) to calculate the actual peptide content of the vials. The bioactivity of the peptides was verified by measuring the suppression of food intake over 24 hours when injected subcutaneously into C57B16 mice (12), and by receptor binding affinity assays using membranes prepared from HEK293 cells overexpressing recombinant human (rh) Y2 or GLP-1 receptor (25).

Subjects

14 overweight and obese volunteers, 11 men and 3 women, of mean age 34.5 ± 2.7 years (range 21–50 years), and mean BMI 30.1 ± 0.9 kg/m\(^2\) (range 26.8–35.9 kg/m\(^2\)), were recruited by advertisement. All volunteers underwent a standardized 75 g oral glucose tolerance test (OGTT) to exclude both diabetes and impaired glucose tolerance, in order to reduce variability in insulin secretion and sensitivity. Inclusion criteria were: age 18 years and over, male or female, body mass index (BMI) 25–40 kg/m\(^2\), nonsmokers with stable weight for at least three months. Exclusion criteria were: diabetes mellitus or impaired glucose tolerance according to WHO 2006 and 2011 criteria, history of alcoholism or substance abuse, history of any major illness or use of any medications, including over the counter products, which, in the opinion of the investigator, would either interfere with the study or potentially cause harm to the volunteer. Women who were pregnant, breastfeeding or unable to maintain adequate contraception for the duration of the study and for one month afterwards were also excluded.

All volunteers were screened and determined to be in normal health by medical history, physical examination, 12 lead electrocardiogram (ECG) and routine biochemistry and hematology. Women of child bearing age were advised to avoid pregnancy during the study and for one month after completion. The study was approved by the Hammersmith & Queen Charlotte’s Research Ethics Committee (reference no. 09/H0707/777). All volunteers gave written informed consent, and the study was planned and performed in accordance with the Declaration of Helsinki.

Study Protocol

Each volunteer attended for 5 study visits. The first visit was to acclimatise the volunteer to the clinical environment and to experimental procedures. This acclimatisation visit was run in identical fashion to subsequent, randomized single-blinded visits, except that the infusion always consisted only of vehicle. Data from the acclimatisation visit was not included in the analysis. The subsequent four visits followed a randomized, single-blind,
placebo-controlled crossover design comparing four different infusions: (1) Vehicle alone (Gelofusine® – B. Braun Medical Ltd, Sheffield, UK); (2) PYY3–36 alone (0.15 pmol/kg/min); (3) GLP-17–36 amide alone (0.2 pmol/kg/min); (4) PYY3–36 + GLP-17–36 amide together (0.15 pmol/kg/min and 0.2 pmol/kg/min respectively). The infused doses of the peptide hormones were selected after a preliminary dose-finding phase to achieve plasma concentrations of PYY3–36 at 80–120 pmol/L, a level that has previously been shown to increase postprandial insulin AUC values after an ad libitum meal (22). For GLP-17–36 amide, we aimed to achieve 100–140 pmol/L, a level that has previously been shown to increase insulin secretion rate in response to a graded glucose infusion (26). Randomisation was carried out by an independent clinician not otherwise involved in the study.

In order to limit adsorption of peptide to the infusion apparatus Gelofusine® was used as the vehicle for all peptide infusions, to dissolve the contents of the randomized vials of peptide and to prime all syringes and infusion lines (27). Each peptide was drawn up under sterile conditions in a separate 50 ml syringe and, to allow the use of different infusion rates, delivered by a separate syringe driver (Graseby 3100, SIMS Graseby Ltd, Watford, UK, or Asena GH Mk III, Alaris Medical Systems Ltd, Basingstoke, UK). Thus on a visit when the volunteer received only one peptide, the second syringe delivered vehicle only, set at the delivery rate calculated for the other hormone. Study visits for each volunteer were at least three days apart to allow for washout of peptides and peptide effects. During the 24-hour period prior to each study visit, volunteers refrained from strenuous exercise and alcohol consumption. They fasted from 10 p.m. the night before the study, drinking only water. On the morning of each study visit, volunteers attended a dedicated Clinical Investigation Unit at the Hammersmith Hospital. Female volunteers had a urine β-hCG test to exclude pregnancy before the peptide infusion was started. Two cannulae were inserted into the volunteer’s peripheral veins. One cannula was used for sampling, and the other one was used to administer peptide infusion and IV glucose bolus (via a multiport connector). The infusion containing the peptide hormone(s) was started at 0 minutes. For evaluation of the acute insulin response to glucose (AIRg) and insulin sensitivity, a frequently-sampled intravenous (IV) glucose tolerance test (FSIVGTT) was performed at +60 minutes with an IV glucose bolus of 0.3 g/kg given manually over 2 minutes (28). Augmentation of IVGTT plasma insulin concentrations by tolbutamide or insulin injection was not undertaken since volunteers were normoglycaemic and insulin release was, in any case, likely to be amplified by the GLP-1 infusions. The peptide infusion was stopped at +240 minutes. Volunteers completed a series of visual analog scales (VAS) that rated hunger, satiety, prospective food consumption and nausea throughout the study. These consisted of 100 mm lines with text expressing the most positive and the most negative rating for each variable anchored at either end (29). Pulse and blood pressure (BP) were regularly monitored.

Blood samples were taken for glucose into fluoride oxalate tubes, and insulin into plain serum tubes (Becton, Dickinson, Portsmouth, UK) at ~30, 0, 20, 40, 60, 62, 63, 64, 65, 66, 68, 70, 72, 74, 78, 80, 82, 85, 90, 100, 110, 130, 160, 240 minutes. Larger samples were taken at 0, 20, 40, 60, 80, 100, 160, and 240 minutes for plasma gut hormone analysis in lithium heparin coated tubes (International Scientific Supplies Ltd, Bradford, UK) containing 2000 kallikrein inhibitor units (0.2 ml) aprotinin (Trasylol, Bayer Schering Pharma, Berlin, Germany). The insulin samples were allowed to clot for ten minutes at room temperature, after which they were centrifuged and separated and stored at −20°C until analysis. All other samples underwent immediate centrifugation for 10 minutes, 4000 rpm at 4°C, after which plasma was promptly separated and stored at −20°C until analysis.

Plasma Gut Hormone Assays

All samples were assayed in duplicate and within a single assay to eliminate interassay variation. Serum insulin was assayed using the Siemens Immulite 2000 immunoassay (Erlangen, Germany), which is a solid-phase, two-site chemiluminescent immunoassay with an analytical range of 2 to 300 mIU/L and an intra-assay coefficient of variation of 3.3–5.5%. Plasma glucose was assayed using an Abbott Architect automated analyzer (Maidenhead, UK), utilizing a hexokinase-glucose-6-phosphate dehydrogenase method. The analytical range was 0.278–44.4 mmol/L, with an intra-assay coefficient of variation of 0.65–1.98% and an interassay coefficient of variation of 0.84–0.93%. Plasma total PYY and amidated GLP-1 were measured using established in-house radioimmunoassays (30, 31). The PYY assay’s functional detection limit was 16.8 pmol/L (95% confidence limit (CL) 14.4–19.3) with an intra-assay coefficient of variation of 7.4%. The GLP-1 assay’s functional detection limit was 13.4 pmol/L (95% CL 12.5–14.2) with an intra-assay coefficient of variation of 3.1%.

Data Analysis

Data is expressed as mean ± standard error of the mean (S.E.M.) except where noted. Statistical analysis was carried out using Prism 5.0 (GraphPad Software, San Diego, CA). The acute plasma insulin concentration response to glucose (AIRg: 0–10 minutes), a sensitive index of beta cell function and first-phase insulin response (32), was calculated as the area under the FSIVGTT insulin concentration profile (area-under-the-curve: AUC) from 0 to 10 minutes following glucose administration, calculated using the trapezoid rule (33). Insulin sensitivity (SI), a measure of the ability of insulin to enhance glucose disposal, was determined from FSIVGTT glucose and insulin concentrations using the minimal model of glucose disappearance (34) implemented as previously described (35). The FSIVGTT-derived measures, AIRg and SI, provide the so-called disposition index (DI), calculated as $SI \times AIRg$ (36). This widely-used dimensionless measure of beta cell function, quantifies beta cell adaptation to variation in insulin sensitivity, according to the hyperbolic relationship between insulin resistance and insulin secretion.

Results

Table 1 summarizes the average plasma hormone concentrations achieved in each of the study arms. PYY exposures were similar between the two arms that included PYY3–36 in the infusion (Figure 1A), as were GLP-1 exposures comparing the arms that included GLP-17–36 amide in the infusion (Figure 1B). There were no variations in pulse and BP across infusions and analysis of VAS scores revealed no nausea in response to the gut hormone infusions nor any
differences in subjective ratings of hunger or pleasantness to eat between any of the interventions (data not shown).

Fasting glucose levels were very similar between all infusion arms (Figure 2). With the administration of the IV glucose bolus, glucose levels peaked at 15.5–16.2 mmol/L (64 minutes) and fell back to baseline by 110 minutes. In no case did any volunteer experience a biochemical or symptomatic hypoglycemia as a result of the endogenous insulin release in response to the large IV glucose bolus.

The insulin response to the IV glucose bolus is shown in Figure 3. Infusion of GLP-17–36 amide either alone or in combination with PYY3–36, augmented the insulin secretory response following the IV glucose bolus compared with either vehicle or PYY alone. In line with this, the AIRg during each infusion showed a significant difference in means (P = .005 – Figure 4A). No significant difference was detected on post hoc testing between vehicle and PYY3–36 (mean difference in AIRg 60.71 mU/L·min, 95% C.I. for difference −210.2 to 331.7). A significant difference was detected between vehicle and GLP-17–36 amide (P < .01: mean difference in AIRg 341.7 mU/L·min, 95% C.I. for difference 70.77 to 610.7). The PYY3–36 + GLP-17–36 amide combination also significantly increased AIRg compared to vehicle, similar to GLP-17–36 amide (P < .05: mean difference 275.4 mU/L·min, 95% C.I. for difference 4.48 to 546.4). Comparison of AIRg in GLP-17–36 amide alone vs PYY3–36 + GLP-17–36 amide showed no significant difference (mean difference −66.29 mU/L·min, 95% C.I. for difference −337.2 to 204.7).

No significant differences in the insulin sensitivity index (S) were discerned between infusion arms (P = .79 – Figure 4B). There was no significant difference in mean DI between infusion arms (P = .07 – Figure 4C).

Discussion

In this study, we measured the changes in first-phase insulin secretion and insulin sensitivity in response to an acute infusion of PYY3–36 and GLP-17–36 amide in healthy, overweight, nondiabetic humans using an FSIVGTT. As expected from its known action as an incretin hormone, GLP-17–36 amide infusion significantly increased first-phase insulin secretion in response to the IV glucose, compared with vehicle. Similarly, we noted a significant elevation in AIRg with combination PYY3–36 + GLP-17–36 amide infusion. PYY3–36 infusion alone resulted in a slight, nonsignificant rise in AIRg compared with vehicle. There appears to be no additive or synergistic effect between PYY3–36 and GLP-17–36 amide on insulin secretion as the combination caused an elevation in AIRg of similar magnitude to GLP-17–36 amide alone. Furthermore, neither hormone had any significant acute effect on measures of insulin sensitivity in this cohort, hence the changes in disposition indices mirrored the changes in AIRg across all infusion arms.

We have therefore shown that acute, low dose administration of PYY3–36 to overweight humans has no effect on insulin sensitivity and no significant effect on beta cell secretory function. In the study by Sloth et al, which did report an insulinotropic effect of exogenously administered PYY3–36 at 0.2 pmol/kg/min, the insulin response was examined after an ad libitum lunch, but the PYY3–36 group surprisingly ate slightly more than the placebo group, perhaps because the PYY infusion day always followed the placebo day, allowing acclimatization to the study environment and a potential order effect. Thus the increased insulin response with PYY3–36 observed by Sloth et al may be merely a response to an increased energy intake at the meal, because of the higher calorific content of the meal, and also because of an increase in endogenous incretin secretion (22). In this study, volunteers were acclimatized to experimental conditions, infusions were given in a random order, and we utilized a standardized method to examine insulin secretion in response to a fixed IV glucose stimulus. Moreover, the use of an IV glucose stimulus avoids any confounding by endogenous incretin secretion, unlike the meal stimulus employed by Sloth et al.
Figure 1. A, PYY and (B) GLP-1 exposure during the FSIVGTT. Integrated area under the concentration curve (AUC) for 0 to 100 minutes, from the start of the infusion to the end of the intensive minimal modeling period, is plotted on the Y-axis. The X-axis indicates infusion given. Mean ± S.E.M. plotted. Baseline plasma PYY levels (at 0 mins) were vehicle: 47.7 ± 8.7 pmol/L; PYY3–36: 45.8 ± 8.1 pmol/L; GLP-17–36amide: 34.1 ± 5.3 pmol/L; PYY3–36 + GLP-17–36 amide: 52.2 ± 10.9 pmol/L. End-infusion (+240min: steady state) levels were vehicle: 26.7 ± 15.8 pmol/L; PYY3–36: 113.5 ± 13.7 pmol/L; GLP-17–36 amide: 21.3 ± 13.9 pmol/L; PYY3–36 + GLP-17–36 amide: 97.8 ± 37.2 pmol/L. To estimate the exposure of volunteers to PYY3–36 from 0 to 100 mins, the respective AUC for each infusion arm was calculated as follows: vehicle: 2766 ± 423.7 pmol·L⁻¹·min, PYY3–36: 6091 ± 861.2 pmol·L⁻¹·min, GLP-17–36 amide: 3395 ± 575.9 pmol·L⁻¹·min, PYY3–36 + GLP-17–36 amide: 7297 ± 1460 pmol·L⁻¹·min. Baseline plasma GLP-1 levels (at 0 mins) across different infusion arms were vehicle: 43.7 ± 6.2 pmol/L; PYY3–36: 43.8 ± 7.7 pmol/L; GLP-17–36 amide: 55.6 ± 9.7 pmol/L; PYY3–36 + GLP-17–36 amide: 52.6 ± 15.2 pmol/L. End-infusion (+240min: steady state) levels were vehicle: 44.0 ± 8.5 pmol/L; PYY3–36: 133.4 ± 2.6 pmol/L; GLP-17–36 amide: 142.2 ± 22.3 pmol/L; PYY3–36 + GLP-17–36 amide: 140.4 ± 22.0 pmol/L. To estimate the exposure of volunteers to GLP-17–36 amide from 0 to 100 mins, the respective AUC for each infusion arm was calculated as follows: vehicle: 3614 ± 344.2 pmol·L⁻¹·min, PYY3–36: 3813 ± 458.7 pmol·L⁻¹·min, GLP-17–36 amide: 9084 ± 1134 pmol·L⁻¹·min, PYY3–36 + GLP-17–36 amide: 8639 ± 1495 pmol·L⁻¹·min.
Nevertheless, a limitation of our study is that it does not entirely exclude a modest insulinotropic effect of PYY$_{3-36}$ within the setting of the validated FSIVGTT protocol which incorporated a large glycaemic excursion as standard. A second limitation is that we only studied the first-phase insulin response, as the FSIVGTT incorporates a

Figure 2. Plasma glucose levels during the FSIVGTT. Y-axis shows plasma glucose levels (mmol/L). X-axis shows time (min). IV glucose bolus (0.3 g/kg) given at 60 minutes. Mean ± S.E.M. plotted. Open circles, dashed line: placebo infusion arm; Closed circles, solid line: PYY$_{3-36}$ infusion (0.15 pmol/kg/min); Closed triangles, solid line: GLP-1$_{7-36}$ amide infusion (0.2 pmol/kg/min); Open triangles, solid line: combined PYY$_{3-36}$ + GLP-1$_{7-36}$ amide infusion. Fasting glucose values for vehicle: 5.3 ± 0.1 mmol/L; PYY$_{3-36}$: 5.3 ± 0.2 mmol/L; GLP-1$_{7-36}$amide: 5.3 ± 0.1 mmol/L; combined PYY$_{3-36}$ + GLP-1$_{7-36}$amide: 5.4 ± 0.1 mmol/L.

Figure 3. Plasma insulin levels during the FSIVGTT. Y-axis shows insulin levels (mU/L). X-axis shows time (min). IV glucose bolus (0.3 g/kg) given at 60 minutes. Mean ± S.E.M. plotted. Open circles, dashed line: placebo infusion arm; Closed circles, solid line: PYY$_{3-36}$ infusion (0.15 pmol/kg/min); Closed triangles, solid line: GLP-1$_{7-36}$ amide infusion (0.2 pmol/kg/min); Open triangles, solid line: combined PYY$_{3-36}$ + GLP-1$_{7-36}$ amide infusion.
transient glucose stimulus and not the sustained hyperglycaemic stimulus necessary to observe the second-phase insulin response (37). It therefore remains possible that the second-phase insulin response is modulated by PYY3–36 and this remains to be tested. Thirdly, it should be noted that we studied low doses of PYY3–36 and GLP-1, selected on the basis of prior evidence of being just sufficient to affect insulin secretion. It is possible that higher doses of the combination could have effects on insulin sensitivity. This could be explored in future studies. A final limitation of note with our study is that it only examined the effects of PYY3–36 and GLP-1 in an acute setting. We speculate that longer-term treatment with the combination of PYY3–36 and GLP-1 may ultimately improve insulin sensitivity over the hormones given individually through additive reductions in food intake and therefore greater weight loss.

Importantly, we have shown that the combination of GLP-1 and PYY3–36 retains the glucose-lowering insulinotropic effect observed with GLP-1, which adds further support to the concept of multiple gut hormone therapy (HT) as a treatment for diabetes and obesity. Future studies will need to focus on measuring the effects of chronic administration of these gut hormones on weight loss, insulin sensitivity and secretion.

Acknowledgments

We would like to acknowledge the staff of the NIHR/Wellcome Trust Clinical Research Facility at Hammersmith Hospital, without whom this project would not have been possible. This project was financially supported by the NIHR Imperial Biomedical Research Centre (P26288). T.M.T., B.C.T.F. and S.R.B. designed the study. T.M.T., V.S., R.C.T., A.A., B.C.T.F., A.D.S., S.M., N.P., K.C.R.B. conducted the study. I.F.G. performed the minimal modeling analysis. M.D., J.M., and M.A.G. advised on the assays utilized in the study. T.M.T. and V.S. wrote the manuscript. All authors reviewed and commented on the manuscript. S.R.B. is the guarantor of this work, had full access to all the data, and takes full responsibility for the integrity of data and the accuracy of data analysis. Investigative Medicine is funded by the MRC, BBSRC, NIHR, an Integrative Mammalian Biology (IMB) Capacity Building Award, and a FP7-HEALTH-2009-241592 EuroCHIP grant, and by funding from the NIHR Imperial Biomedical Research Centre within the Academic Health Sciences Centre. S.R.B. is supported by an NIHR Senior Investigator Award and the MRC. T.M.T. is supported by grants from the MRC. A.D.S. is a recipient of a Wellcome Trust Clinical Research Training Fellowships. R.C.T., V.S. and B.C.T.F. are recipients of MRC Clinical Research Training Fellowships and B.C.T.F. received an NIHR Clinical Lectureship. A.A. is an NIHR Academic Foundation Year 2 trainee. S.M. is an NIHR Academic Clinical Fellow.

Address all correspondence and requests for reprints to: Prof Stephen Bloom, Section of Investigative Medicine, Imperial College London, sixth Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK, telephone: +44(0)20–3313 3242, fax: +44(0)20–3313 8320, email: s.bloom@imperial.ac.uk.

Disclosure Summary: All authors declare that they have no relevant conflicts of interest to disclose.

This work was supported by .

References

2. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosa-
Effects of Combination PYY and GLP-1 on Insulin Secretion

J Clin Endocrinol Metab

De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, Rabiner

Skoglund G, Gross R, Ahren B, Loubatieres-Mariani MM.

Sjostrom L, Karro E, Sjostrom CD, Karason K, Barns L, Pedersen M, Madsen J, Rasmussen MF, Lean ME. The Endocrine Society. Downloaded from press.endocrine.org by [individualUser.displayName] on 30 October 2014. at 07:12 For personal use only. No other uses without permission. All rights reserved.

