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Abstract

This paper concerns the behaviour of nonlinear regular waves interacting with rect-

angular submerged breakwaters. A new series of experimental results is presented

and compared with numerical calculations based upon a Boundary Element Method

(BEM) that utilises multiple fluxes to deal with the discontinuities encountered at

the corners of the domain. Specifically, comparisons concern both the spatial water

surface profiles at various times and the spatial evolution of the harmonics gener-

ated by the breakwaters, the latter being an important focus for the paper. The

BEM is shown to accurately model both the water surface profile and the harmonic

generation, provided the breakwater width is sufficient to ensure that flow sepa-

ration is not a controlling influence. Furthermore, evidence is provided to confirm

that reflection from rectangular submerged breakwaters is fundamentally a linear

phenomenon.
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generation, multiple-flux boundary element method



1 Introduction

Submerged breakwaters are widely used in coastal regions, often being the pre-

ferred solution when full wave protection is not required. They are utilised in a

wide variety of tasks, such as protecting harbour entrances, reducing the rate

of littoral drift and creating artificial fishing grounds. In practice, submerged

breakwaters come in a variety of shapes and their performance is usually as-

sessed on the basis of physical model studies. However, the purpose of the

present paper is to demonstrate that some important aspects of the resulting

wave-structure interaction, notably the harmonic generation as a surface wave

passes over the structure, can be accurately modelled using a fully nonlinear

boundary element method. In contrast, other aspects of the interaction are

shown to be fundamentally linear and can be successfully modelled using ex-

isting analytical procedures irrespective of the steepness of the incident waves.

In considering these effects, the paper restricts its attention to breakwaters of

rectangular form.

In a coastal engineering context the transmissive property of a breakwater,

minimised by reflecting and dissipating the incident wave energy, is of primary

importance. However, when δ = H/d is large and μ = kd is small (where

H is the wave height, d the water depth upstream of the breakwater and

k the incident wave number), harmonic generation or decomposition occurs

above the breakwater. This phenomenon results in energy being transferred

from the first harmonic to higher bound (or phase-locked) harmonics of the

incident wave (Mei and Ünlüata, 1972). On re-entering deeper water, on the

∗ Corresponding author. Tel: +44(0)2075945999, Fax: +44(0)2075945991

Email address: c.swan@imperial.ac.uk (C. Swan).

2



downstream side of the breakwater, these higher harmonics are released as free

waves. This has a significant impact on the transmitted wave energy, not least

because it does not take the form of a monochromatic wave train as predicted

by linear theory. With an increase in the steepness of the incident waves, this

highly nonlinear phenomenon becomes more significant and, as a result, the

existing analytical solutions for wave transmission have proven unsatisfactory.

In part, the motivation for the present study arose from some initial compar-

isons with the experimental observations of Driscoll et al. (1992); the numerical

model of Hague and Swan (2008) providing a better description of the labo-

ratory data than other BEM solutions, notably the model proposed by Grilli

et al. (1989). To confirm this result, and to extend the data to include a far

wider range of incident wave steepnesses, the present study was undertaken.

This paper continues in §2 with a brief review of the background literature.

This leads into a short summary of the BEM model and a description of

the experimental study in §3 and §4 respectively. Comparisons between the

laboratory observations and the model predictions are provided in §5, with
some conclusions and wider implications drawn in §6.

2 Background

Many authors have contributed to the study of submerged breakwaters. In an-

alytical models most theories assume that the reflected and transmitted waves

have the same frequency as the incident wave, satisfying a linear scattering

problem. Historically, Lamb (1932) derived expressions for the reflection, Kr,

and transmission, Kt, coefficients due to an infinite step; the solutions based
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upon the assumptions that the incident wavelength, λ, is large in comparison

to both the upstream water depth, d, and the depth of submergence of the

crest of the breakwater, ds. Dean (1945) developed a linear theory to calcu-

late Kr and Kt for thin breakwaters in infinitely deep water; Ogilvie (1960)

provided the equivalent shallow water solutions; whilst Takano (1960) devel-

oped a linear theory that was applicable for all relative water depths and crest

widths (B/λ, see notation defined on Fig. 1).

On the topic of harmonic generation, Mei and Ünlüata (1972) investigated

wave propagation in shallow water of constant depth, in the absence of any

breakwater. They observed significant transfers of energy to the higher har-

monics for kd < 0.6, and attributed these transfers to resonant interactions

between the first and second harmonics. Massel (1983) developed a second-

order theory for both finite and infinite steps by linearly decomposing the

second-order scattered potential, using the wave steepness, Hk/2, as the per-

turbation parameter. Comparisons between these results and experimental

data showed that whilst the second harmonic was reasonably well predicted,

the modulation of the first harmonic over high steps (ds/d = 0.47) was not.

Dattatri et al. (1978) performed a wide ranging laboratory study of sub-

merged breakwaters and found the most influential parameters affecting Kt

were the relative crest width, B/λ, and the relative depth of submergence,

ds/d (Fig. 1). More recently, Rey et al. (1992) presented experimental studies

of Kr and the harmonic generation produced by monochromatic linear waves

(0.002 � Hk/2 � 0.06) interacting with solid rectangular steps composed

of both sharp and rounded corners. They compared their measurements to

the linear theories of Takano (1960) and Devillard et al. (1988) showing that

both analytical models accurately predicted Kr, but gave differing results for

4



the harmonic generation. Rey et al. (1992) also undertook flow visualisation

studies to investigate the influence of the incident amplitude and the curva-

ture of the corners and, as expected, found that the higher the incident wave

amplitude and the sharper the corners the greater the flow separation.

Numerically, shallow water phenomena are commonly described using Boussi-

nesq models, examples including Battjes and Beji (1992) and Eldeberky and

Battjes (1994). However, several authors have also tackled the problem using a

boundary element approach. For example, Ohyama and Nadaoka (1992) used

a BEM to investigate the harmonic generation resulting from the interaction

of regular and irregular waves with finite and infinite steps. They concluded

that the transfer of energy to the higher harmonics was critically dependent

on the ratio between the crest width of the breakwater and the beat length of

the relevant harmonic; the latter being discussed in §5.2.

Driscoll et al. (1992) undertook a similar study to the present one; compar-

ing experimental results with the fully nonlinear BEM method of Grilli et al.

(1989) for rectangular impermeable submerged obstacles. Specifically, they

investigated the harmonic generation produced by a linear incident regular

wave of steepness Hk/2 = 0.019 interacting with a rectangular obstacle of

vertical aspect ratio ds/d = 0.24. In addition, Driscoll et al. (1992) measured

the reflection and transmission coefficients for a variety of wave steepnesses

and compared them to the linear scattering model of Losada (1991). These

results showed that the linear model accurately predicted the reflection co-

efficient, but overestimated the transmission coefficient. In explaining these

results Driscoll et al. (1992) concluded that this discrepancy was caused by

a combination of dissipation, due to frictional and turbulent loses, and the

energy transfer to higher harmonics. These conclusions are in broad agree-
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ment with the earlier work of Dick and Brebner (1968) who claimed (for the

cases that they investigated) between 36% to 64% of the transmitted wave

energy is transferred to higher harmonics of the incident wave. It is clear from

these results alone that if wave transmission over a submerged breakwater is

to be effectively modelled, an appropriate theory or model must incorporate

nonlinear harmonic generation.

The present paper adds to this discussion in two respects. First, it provides

laboratory observations concerning nonlinear incident regular waves. In terms

of the wave steepness, Hk/2, the present wave conditions are 2.5 and 10 times

steeper than those of Beji et al. (1992) and Driscoll et al. (1992) respectively.

Second, comparisons with a multiple-flux BEM model will demonstrate that

these important effects can be reproduced by fully nonlinear computations.

Although these contributions are significant, it is nonetheless important to

note that the BEM provides a potential flow solution and cannot therefore

incorporate the effects of wave breaking, particularly the associated energy

dissipation. Whilst this is undoubtedly an important limitation, Gu and Wang

(1992) note that on the basis of experimental observation the transmission

coefficient, Kt, hardly varies once the breaking limit is exceeded. Furthermore,

Battjes and Beji (1992) showed that breaking does not significantly affect

the energy transfers associated with harmonic generation; the energy being

dissipated from all frequencies in an average sense.

3 Boundary Element Method (BEM)

Longuet-Higgins and Cokelet (1976) were the first to apply the Boundary Inte-

gral Equation (BIE) to the description of surface water waves. Building upon
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this important lead, several authors have made significant contributions; the

models associated with the latter being broadly divided into two categories.

The first involves models based upon the Cauchy integral formula. This is a

conformal mapping scheme that has been very successfully applied in two-

dimensions by Dold and Peregrine (1984). Although this has been shown to

be accurate and efficient, it involves calculations in the complex plane, and

cannot, therefore, be extended to three-dimensions. In contrast, more recent

efforts (Grilli et al., 1989) have focused on using Green’s second identity. This

is located in physical space, can be applied to three-dimensional simulations,

and is not constrained by periodicity or uniform depth (Grilli et al., 2001).

Within this second category, Hague and Swan (2008) have developed a phys-

ical space BEM that utilises multiple fluxes to overcome the corner problem

(discussed in §3.3) and describe surface water waves without smoothing, fil-

tering or re-griding of any kind. This is particularly important in problems

involving significant energy shifts, the magnitude of which cannot be deter-

mined a priori. In earlier studies, this model has accurately simulated several

realistic three-dimensional JONSWAP sea-states with vast numbers of fre-

quency and directional components (Hague and Swan, 2006). In the present

study the two-dimensional formulation of this model (Hague and Swan, 2008)

has been extended to include structures within the computational domain.

This introduces more corners or geometric discontinuities, but in this case

they define the principal area of interest (the submerged breakwater) rather

than merely being located on the periphery of the domain as is the case in

a standard numerical wave tank. Clearly this provides a stringent test of the

performance of the multiple flux approach.
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3.1 Governing Equations

With the fluid assumed to be incompressible and inviscid and the flow irrota-

tional, mass continuity is defined by Laplace’s equation and must be satisfied

throughout the fluid domain such that

∇φ 2 = 0, (1)

where φ(x, z, t) is the velocity potential. In the spatial domain a fundamental

solution to (1) is given by Green’s function, G(p, q) = − 1
2π

ln (r(p, q)), where

r(p, q) = |xp − xq| with xp and xq the source and evaluation points on the

boundary respectively. Applying Green’s second identity, the dimensionality

is reduced by one and the Boundary Integral Equation (BIE) results

C(p)φ(p) +
∫
Γ
φ(q)

∂G(p, q)

∂n
dΓ(q) =

∫
Γ
G(p, q)

∂φ(q)

∂n
dΓ(q), (2)

where n is the unit outward normal, Γ defines the boundary of the domain,

and C(p) is a function of the position of the source on the boundary; the latter

calculated using a rigid mode technique (Becker, 1992).

3.2 Boundary Conditions

The model utilises mixed boundary conditions, consisting of Neumann condi-

tions (prescribed ∂φ/∂n) on the bed, left and right boundaries (Γb, Γl and Γr

respectively) and a Dirichlet boundary condition (prescribed φ) on the water

surface (Γs). Further details of the computational domain and the notation
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employed are given in Fig. 1 and Fig. 2.

Taking each of the boundaries in turn:

(a) The left boundary, Γl, is defined as a semi-Lagrangian input boundary

on which the Stokes’ fifth analytical velocities corresponding to a regular

wave train are prescribed following the solution of Fenton (1985). Along

this boundary the nodes are free to move vertically, but not horizontally.

(b) On the bed, Γb, which includes the impermeable submerged breakwater,

a zero flux condition is imposed, ∂φ
∂n

= 0.

(c) On the right boundary, Γr, a Sommerfeld (1949) radiation condition is

applied

∂φ

∂x
= −1

c

∂φ

∂t

∣∣∣∣∣∣
xup,t−Δt

, (3)

where c is the known phase velocity corresponding to the input waves,

xup = x − cΔt with x being the horizontal coordinate of the right-hand

side nodes and Δt the time step. Equation (3) is applied at the corner

node, at the intersection between the water surface and the right bound-

ary. For the remainder of the nodes on Γr, a linear velocity profile scaled

to match the horizontal velocity at the water surface, equation (3), is

applied to approximate the radiation condition with depth below the wa-

ter surface. Hague (2006) showed that for a regular wave, this radiation

condition results in a reflection coefficient that is less than 2%.

(d) Finally, on the water surface, Γs, a velocity potential of φ = 0 is initially

prescribed to model still water.
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3.3 Multiple Fluxes

With the boundary element approach derived in physical space, the corners of

the domain create certain difficulties. Indeed, they represent geometric discon-

tinuities and with the BIE (2) requiring a smooth boundary, these discontinu-

ities give rise to the so-called corner problem. Traditionally, BEM-based wave

models have overcome this hurdle using the double-node approach (Grilli and

Svendsen, 1990). In contrast, Hague and Swan (2008) introduced the multiple

flux technique of Brebbia and Dominguez (1992) to numerical wave simula-

tions. This method specifies only one node at a corner, but considers all of the

fluxes associated with that location. With the introduction of a submerged

breakwater, several additional geometric discontinuities are introduced. An

accurate treatment of the corner problem is essential, not least because these

additional corners lie central to the domain. Indeed, they define an essential

part of the problem to be solved; the submerged breakwater. The numerical

model of Hague and Swan (2008) is used throughout this paper and its suc-

cessful treatment of the corners is believed to be fundamental to the success

of the calculations.

3.4 System of Equations

In order to evaluate the BIE (2), the boundary of the fluid domain is discre-

tised into M isoparametric quadratic elements, resulting in N nodes (Becker,

1992). The discretised version of the BIE is numerically integrated by Gaussian

quadrature, resulting in a linear system of equations

H {φ} = G

{
∂φ

∂n

}
, (4)
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where H (size N ×N) and G (size N × 3M , as there are now three fluxes per

element due to the multiple flux technique) are coefficient matrices and {φ}
(size N × 1) and {∂φ/∂n} (size 3M × 1) are the column vectors of all the φ

and ∂φ/∂n variables respectively. After applying the mixed boundary condi-

tions, the unknown values are transferred to the left-hand side by swapping

the elements of the vectors {φ} and {∂φ/∂n} resulting in a linear system of

equations

Ax = b, (5)

where A is the influence matrix, x contains all the unknown variables and b is

the vector determined by the matrix-vector product of the known quantities.

The unknown vector, x, is then determined using the GMRES iterative solver

(Saad and Schultz, 1986) with a Jacobi preconditioner (Barrett et al., 1994;

Trefethen and Bau III, 1997), reducing the computational effort from O(N3)

to O(N2).

3.5 Free Surface and Time Marching

A semi-Lagrangian framework is used throughout the present simulations,

allowing the nodes to move vertically but not horizontally. The free surface is

defined by both the Kinematic Free Surface Boundary Condition (KFSBC)

δη

δt
=

∂φ

∂z
− ∂φ

∂x

∂η

∂x
, (6)

and the Dynamic Free Surface Boundary Condition (DFSBC)

δφ

δt
= −gη − 1

2

[(
∂φ

∂x

)2

+

(
∂φ

∂z

)2 ]
+

∂φ

∂z

(
∂φ

∂z
− ∂φ

∂x

∂η

∂x

)
, (7)

where δ/δt denotes a time derivative in the semi-Lagrangian frame. With the

right-hand side of both (6) and (7) independent of time, they can be treated
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as ordinary differential equations and time marched to obtain values of η

and φ at the next time step. This mixed Eulerian-Lagrangian time marching

is undertaken using the fourth-order predictor-corrector method of Adams-

Bashforth-Moulton. As this method requires information from three previous

time steps, it is necessary to kick-start the model by using three steps of a

fourth-order Runge-Kutta integration scheme; the latter being a single step

method.

4 Experimental Investigations

The experiments were performed in a glass-walled wave flume located in

the Hydrodynamics Laboratory in the Department of Civil & Environmen-

tal Engineering at Imperial College London. The flume is equipped with

bottom-hinged, flap-type, wave makers located at either end. These are capa-

ble of generating and absorbing unidirectional waves in the frequency range

0.3Hz � f � 3Hz. The flume is 27m long, 0.3m wide and has an operating

water depth of d = 0.7m.

The study considered four submerged breakwaters, each subject to three differ-

ent regular wave conditions. All of the breakwaters were rectangular extending

the full width of the flume with a height of h = 0.35m; the latter representing a

relative depth of submergence of ds/d = 0.5. The four breakwaters correspond

to crest widths of B = 1.5cm, 35cm, 70cm and 105cm; the front of each being

located 13.35m from the generating paddle. A sketch showing the layout of

the experimental apparatus is given on Fig. 3.

The three regular wave conditions were selected to cover a broad range of
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steepness and hence nonlinearity. The wave period was held constant at T =

1.28s, resulting in kd = 1.94 on the upstream and downstream sides of the

breakwater, and kds = 0.97 above the structure, with a corresponding incident

wave number of k = 2.77 rad/m. With the wave heights for the three cases

corresponding to H = 39.2mm, 106.2mm and 142.1mm, the wave steepness is

Hk/2 = 0.054, 0.147 and 0.197 representing linear, weakly nonlinear and non-

linear incident waves respectively. Full details of the wave parameters adopted

in the present study are given in Table 1. In line with earlier discussions, the

nonlinear case was chosen to be as steep as possible, whilst avoiding the oc-

currence of wave breaking during its interaction with the breakwater having

the largest crest width (B = 105cm). With the absence of wave breaking,

comparisons to the BEM were possible over the full range of test conditions.

Within the laboratory study the water surface elevations were recorded using

surface-piercing, resistance, wave gauges. Each gauge provides a time-history

of the water surface elevation, η(t), at one location fixed in space; earlier stud-

ies having shown that such measurements can be achieved with an accuracy of

±0.5mm with no significant disturbance of the wave field. In each test a con-

trol gauge was located 2.85m from the generating wave paddle, allowing the

repeatability of the waves to be monitored. An array of twenty gauges, with

individual wave gauges equally spaced at 20mm apart, was used to measure

η(t) in the immediate vicinity of the breakwater. By moving the array into

five different locations, and repeating the measurements, data were recorded

from 20mm upstream to 1.32m downstream of the front of the breakwater. In

all cases some overlap between the gauge locations provided a second check of

the repeatability of the generated waves. In each test case, the wave conditions

were first run without any structure present (on a flat bed) and then re-run
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with each of the four breakwaters in turn; the difference between these records

identifying directly the disturbance or change caused by the presence of the

submerged breakwater.

5 Discussion of Results

The computational domain used for the numerical runs was identical to the

experimental set-up given in Fig. 3; the only exception being that the generat-

ing and absorbing wave paddles are replaced with the semi-Lagrangian input

and the radiation condition respectively, both described in §3.2. The number

of elements employed to discretise the computational domains and the typical

run times per step are given in Table 2. Furthermore, the time histories of the

water surface elevation, η(t), were obtained from the BEM via numerical wave

gauges located at the same positions as their experimental counterparts.

To ensure a valid comparison between the experimental and numerical data

describing the wave-structure interaction, the incident wave conditions must

be identical. Fig. 4 concerns the time-history of the water surface elevation,

for each of the three wave cases, measured in the absence of a structure (on

a flat bed). The data relate to conditions 13.95m from the generating paddle

and demonstrates excellent agreement between the measured and predicted

incident waves.

Although the absorbing wave paddle, located at the downstream end of the

wave flume, efficiently dissipated most of the incident wave energy, small un-

wanted reflections from this downstream boundary will eventually contam-

inate the measured data. To avoid this the sample time was chosen to lie
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between the arrival of the steady regular waves and the instant at which re-

flections from the absorbing paddle arrive back at the measuring section. This

corresponded to a time interval of 24s � t � 32s, where t = 0s coincides

with the onset of wave generation. All the data presented below were sampled

within this range and must therefore be independent of any small spurious

effects arising at the downstream boundary.

5.1 Spatial Water Surface Profiles

Figs. 5, 6, 7 and 8 concern spatial water surface profiles in the vicinity of the

submerged breakwaters, providing comparisons between the laboratory data

and the BEM model predictions for the four crest widths of B = 1.5cm, 35cm,

70cm and 105cm respectively. In each case, comparisons are provided for four

different times, corresponding to different phases of the wave cycle, and for all

three incident wave cases. In addition, spatial profiles calculated without the

structures present are also plotted to indicate the influence of the submerged

breakwaters on the water surface. In each of these figures it is clear that the

BEM model compares very favourably with the experimental observations.

Given the relative submergence of ds/d = 0.5, it is to be expected that the

breakwater with the smallest crest width (B = 1.5cm on Fig. 5) has a neg-

ligible influence on the surface profile. However, with increasing crest width,

the influence of the submerged structure becomes clear: the steepening of the

wave profile and the decrease in the phase velocity being clearly noted, par-

ticularly in Figs. 6(f), 7(f) and 8(f). In comparing these cases the decrease in

the phase velocity is of the order of 15%. This latter value does not appear to

be strongly dependent upon the incident wave steepness, and is surprisingly
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consistent for the largest three breakwaters (B = 35cm, 70cm and 105cm). In

contrast, the wave steepness continues to increase with the breakwater crest

width. This, in turn, indicates that the shallower water over the structure in-

troduces significant nonlinearity. Indeed, Eldeberky and Battjes (1994) state

that this increased nonlinearity in the shallower region, above the submerged

breakwater, amplifies the bound harmonics. These are then released as free

waves downstream of the breakwater where the water depth once again in-

creases and the nonlinearity must necessarily reduce.

5.2 Harmonic Generation

In order to calculate the harmonic generation produced by each of the four

breakwater cases, a Fast Fourier Transform (FFT) of the water surface ele-

vation, η(t), was used to define the amplitude spectrum at each wave gauge

location. Having isolated each harmonic, the spatial evolution of the harmonic

amplitudes can be deduced and this is presented in Figs. 9, 10, 11 and 12 cor-

responding to breakwater crest widths of B = 1.5cm, 35cm, 70cm and 105cm

respectively. Each figure describes the spatial evolution of the first four har-

monic amplitudes present in the experimental observation and in the BEM

model predictions; with data provided for each of the three wave cases. For

comparative purposes a similar analysis is also undertaken for the incident

waves (no structure present), again predicted by the BEM model. In order to

facilitate comparisons between the three wave cases, the vertical axes of the

linear and weakly nonlinear cases are chosen so that the difference between

the maximum and minimum values is identical to that of the corresponding

nonlinear case.
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With the exception of the results relating to the narrowest breakwater (B =

1.5cm on Fig. 9), the BEM predictions are in good agreement with the experi-

mental observations. The poor BEM predictions in the first case (B = 1.5cm)

are due to the relative importance of flow separation; the lengths of the shed

vortices being large relative to the breakwater width, B. From visual obser-

vations the diameter of the shed vortex, Dv, was found to be approximately

1.5cm, 3cm and 4cm for the linear, weakly nonlinear and nonlinear wave cases

respectively. Relative to the breakwater crest width B = 1.5cm, this corre-

sponds to ratios of Dv/B = 1.0, 2.0 and 2.7 for the three wave cases. Com-

paratively, the ratios for the next widest breakwater, B = 35cm on Fig. 10,

are significantly smaller at Dv/B = 0.04, 0.09 and 0.11. The practical conse-

quences of this is that, as far as the overlying waves are concerned, the shed-

ding of vortices significantly increases the effective crest width of the narrowest

breakwater. Furthermore, vortices are shed both upstream and downstream of

the structure; the former caused by the negative velocities occurring beneath

a wave trough and the latter the positive velocities beneath a wave crest.

This results in a moving obstacle, the effective size of which is larger than the

physical breakwater. The BEM model is based upon an inviscid irrotational

formulation and so does not model flow separation. Hence, the numerical wave

field is only influenced by the stationary, narrower breakwater. This accounts

for the large discrepancies arising in Fig. 9.

In all the remaining breakwater cases, the trends of the harmonic generation

are very well described, with reasonable agreement in the absolute magni-

tude of the terms involved. Typically, the agreement between the measured

and predicted results improves as the breakwater crest width increases and

the steepness of the incident wave reduces; the latter implying reduced wa-
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ter particle kinematics. This is to be expected and again reflects the relative

importance of flow separation and vortex shedding.

It is also important to note that the good description of the harmonic gen-

eration holds equally well for the third and fourth harmonics as for the first

and second harmonics. In part, this arises because of the lack of smoothing

or filtering undertaken in the current BEM formulation and, more generally,

reflects the success of the multiple flux approach. Indeed, if we contrast the

present comparisons with those made between the experiments of Driscoll

et al. (1992) and the BEM of Grilli et al. (1989), the most striking difference

lies in the accuracy of the higher harmonic predictions.

With good agreement between the BEM predictions and the experimental

observations in the vicinity of the breakwater, it is possible to take advantage

of the full spatial information (covering the entire domain) generated by the

numerical model. Figs. 13, 14 and 15 concern the spatial evolution of the

amplitude of the first three harmonics in the linear and nonlinear wave cases

for submerged breakwaters with crest widths of B = 35cm, 70cm and 105cm

respectively.

Figs. 13(a)(b), 14(a)(b) and 15(a)(b) concern the amplitude of the first har-

monic. Upstream of the breakwater (x � 13.35m) there is a marked contrast

between the constant amplitude describing the incident waves in the absence

of the breakwater and the fluctuating amplitude predicted with the breakwa-

ter present; the latter defining the partial standing wave that forms due to the

constructive and destructive interference between the incident and reflected

waves. In contrast, the second and third harmonic amplitudes (Figs. 13(c)–

(f), 14(c)–(f) and 15(c)–(f)) within this same upstream region show no signif-
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icant variation between the data generated with and without the breakwater

in place. This suggests that wave reflection from a submerged breakwater is

dominated by the first harmonic motion. This, in turn, explains the accurate

prediction of the reflection coefficient, Kr, by linear theory reported by several

authors including Driscoll et al. (1992) and Rey et al. (1992).

Downstream of the breakwater (x � 14.4m) the data presented on Figs. 13, 14

and 15 highlight the importance of the nonlinearity of the incident waves and

the subsequent wave interactions in respect of wave transmission and, par-

ticularly, the nature of the harmonic generation. For example, comparisons

between the linear and nonlinear wave cases identify significant differences

in the amplitudes of the harmonics; the effect being particularly marked in

respect of the first harmonic. In the linear wave case (Figs. 13(a), 14(a) and

15(a)) the amplitude of the first harmonic remains constant and approxi-

mately equal to its value in the incident waves measured in the absence of the

breakwater. In contrast, in the nonlinear wave case the amplitude of the first

harmonic exhibits significant modulation relative to the data recorded with no

structure present. Furthermore, in both the linear and nonlinear wave cases,

Figs. 13, 14 and 15 describe a marked increase in the amplitude of the second

and third harmonics relative to the incident wave conditions; the amplitudes

of these harmonics fluctuating with distance downstream of the breakwater.

This latter effect arises because of the interaction (constructive and destruc-

tive interference) between the free and bound waves arising at each harmonic;

the two components having different wave numbers and hence different phase

velocities.

The first and second harmonic interactions were first described in a second-

order theory proposed by Massel (1983). The present results are in broad
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agreement with this theory. However, with the BEM calculations retaining the

fully nonlinearity of the problem, there are also some important differences.

Based upon second-order wave interactions, Massel (1983) defined the spatial

variation or beat length of the first and second harmonics as

Lt =
2π

k(2) − 2k(1)
, (8)

where k(1) and k(2) are the wave numbers of the first and second free har-

monics respectively, with k(2) � k(1). Within the present study, the constant

incident wave period (T = 1.23s) defines Lt = 1.23m for all cases. Using the

results of the BEM calculations, the beat lengths for each of the first three

harmonics are presented on Table 3. In the linear wave case, the beat length

of the second harmonic (L
(2)
t ) is in very good agreement with that predicted

by Massel (1983). However, with an increase in the incident wave steepness

the weakly nonlinear and nonlinear wave cases produce beat lengths that are

approximately 11% and 23% greater than the value predicted by equation (8).

The data presented in Table 3 also show that for each incident wave steep-

ness, the beat lengths associated with each of the first three harmonics are

remarkably similar. An explanation for this lies in the nature of the harmonic

generation (Massel, 1983) and the form of the wave interactions (Longuet-

Higgins and Stewart, 1960); the combination of the two providing evidence

as to which interactions become dominant. When regular waves propagate

over a submerged breakwater, the amplitudes of the bound higher harmonic

waves increase, contributing to the wave steepening observed in Figs. 6, 7

and 8. When the waves propagate off the breakwaters, some proportion of

these higher harmonic waves are shed as freely propagating waves; hence the

notion of harmonic generation. The downstream wave field therefore consists
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of a freely propagating first harmonic (ω(1), k(1)), its associated bound har-

monics, (2ω(1), 2k(1)), (3ω(1), 3k(1)) etc., and the newly generated free waves

(ω(2), k(2)),(ω(3), k(3)) etc.; the accompanying notation describing the (wave

frequency, wave number) and the superscript denoting the harmonic concerned

such that ω(2) = 2ω(1) and ω(3) = 3ω(1).

In describing the first harmonic, the amplitude fluctuation is due to the inter-

action between the freely propagating wave (ω(1), k(1)) and a bound first har-

monic; the latter representing the frequency difference terms arising from the

interaction of the first and second harmonic free waves (ω(2)−ω(1), k(2)−k(1)).

Having defined the waves involved, the beat length, Lt, is given by 2π/Δk,

where Δk is the difference in the wave numbers of the interacting waves. In

the case of the first harmonic, Δk = (k(2) − k(1)) − k(1) and hence L
(1)
t is de-

fined by equation (8). In addressing the second harmonic, the key interactions

concern the freely propagating second harmonic (ω(2), k(2)) and the bound

second harmonic resulting from the self-interaction (or Stokes term) involving

what is essentially a frequency sum term (ω(1) + ω(1), k(1) + k(1)). In this case

the relevant Δk = k(2) − 2k(1) and the beat length L
(2)
t is again defined by

equation (8). In considering the third harmonic, the problem becomes more

complicated because of the number of possible interactions. However, having

considered the size of the terms involved and the data presented on Table 3, it

appears that the dominant interaction involves two bound waves travelling at

different velocities. The first of these is the third harmonic Stokes wave (3ω(1),

3k(1)) and the second is a frequency-sum term arising from the interaction of

the first and second harmonic free waves (ω(1) + ω(2), k(1) + k(2)). In this case

Δk = (k(1) + k(2))− 3k(1) with L
(3)
t again defined by equation (8).

In seeking to describe the origins of the amplitude modulations, it is inter-
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esting to note that whilst the first harmonic involves the interactions with a

frequency difference term, the second and third harmonics involve interactions

with frequency sum terms. Since sum and difference terms are typically out of

phase, the amplitude modulation of the first harmonic should be 180◦ out of

phase with the amplitude modulation of the second and third. The data pre-

sented in Figs. 13, 14 and 15 describes exactly this trend; the relative phasing

of the amplitude modulations being completely independent of the breakwater

width, B.

6 Conclusions

The present study has considered the propagation of regular waves of varying

steepness over submerged rectangular breakwaters of varying crest width and

has provided comparisons between laboratory observations and fully nonlinear

numerical calculations based upon a multiple-flux boundary element method.

These comparisons demonstrate that with an effective treatment of the corner

problem, based on the concept of multiple fluxes, very good agreement with

the laboratory observations can be achieved. Most importantly, there is no

need for smoothing, filtering or re-gridding and there is no ambiguity con-

cerning the generation of higher harmonic wave components downstream of

the breakwater.

For the cases considered both the experimental observations and the numerical

calculations confirm that the reflection of waves from a submerged breakwater

is fundamentally linear, even if the incident waves are nonlinear. This result

is consistent with earlier work in which laboratory observations were shown

to be in good agreement with reflection calculations based on linear theory;
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suggesting that the latter is appropriate to engineering calculations.

In contrast, the wave profile evolving over the breakwaters undergoes signifi-

cant steepening and nonlinear amplification, with the maximum crest elevation

increased by as much as 25%. Likewise, the transmission of waves from the

downstream side of the breakwaters is also highly nonlinear, both in terms

of the generation of freely propagating wave harmonics and the interaction

between the free and bound wave components; the latter leading to significant

amplitude modulation affecting all the harmonic components. Comparisons

between these results and the second-order model of Massel (1983) confirm

that his estimate of the beat length, or the spatial scale of the amplitude

modulation, is broadly correct but subject to large variations depending on

the nonlinearity of the wave field. In contrast to the observed reflections, both

the evolution of the wave profile over the breakwater and the transmission

of waves downstream of the breakwater are highly nonlinear processes and

should be modelled accordingly.
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BEM.

Table 1

Regular wave cases.

Case H [mm] k [rad/m] Hk/2 [-] λ [m] d [m]

Linear 39.2 2.769 0.054 2.269 0.7

Weakly nonlinear 106.2 2.769 0.147 2.269 0.7

Nonlinear 142.1 2.769 0.197 2.269 0.7
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Fig. 5. The spatial surface elevation, η(x), in the vicinity of a submerged breakwater

of crest width B = 1.5cm. Experimental observations, - · - · - BEM predictions

without a structure, BEM predictions with a structure. (Note: the dashed lines

indicate the extent of the breakwater).

Table 2

Number of elements and typical run times for each computational domain.

B [cm] NE [-] Run time per step [s]

1.5 406 1.28

35.0 396 1.22

70.0 398 1.23

105.0 410 1.30
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Fig. 6. The spatial surface elevation, η(x), in the vicinity of a submerged breakwater

of crest width B = 35cm. Experimental observations, - · - · - BEM predictions

without a structure, BEM predictions with a structure. (Note: the dashed lines

indicate the extent of the breakwater).
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Fig. 7. The spatial surface elevation, η(x), in the vicinity of a submerged breakwater

of crest width B = 70cm. Experimental observations, - · - · - BEM predictions

without a structure, BEM predictions with a structure. (Note: the dashed lines

indicate the extent of the breakwater).
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Fig. 8. The spatial surface elevation, η(x), in the vicinity of a submerged breakwater

of crest width B = 105cm. Experimental observations, - · - · - BEM predictions

without a structure, BEM predictions with a structure. (Note: the dashed lines

indicate the extent of the breakwater).
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Fig. 9. The harmonic generation produced by a submerged breakwater of crest

width B = 1.5cm. Experimental observations, - · - · - BEM predictions without

a structure, BEM predictions with a structure. (Note: the dashed lines indicate

the extent of the breakwater).
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Fig. 10. The harmonic generation produced by a submerged breakwater of crest

width B = 35cm. Experimental observations, - · - · - BEM predictions without

a structure, BEM predictions with a structure. (Note: the dashed lines indicate

the extent of the breakwater).
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Fig. 11. The harmonic generation produced by a submerged breakwater of crest

width B = 70cm. Experimental observations, - · - · - BEM predictions without

a structure, BEM predictions with a structure. (Note: the dashed lines indicate

the extent of the breakwater).
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Fig. 12. The harmonic generation produced by a submerged breakwater of crest

width B = 105cm. Experimental observations, - · - · - BEM predictions without

a structure, BEM predictions with a structure. (Note: the dashed lines indicate

the extent of the breakwater).
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Fig. 13. Harmonic evolution throughout the entire computational domain. BEM

predictions of the incident wave (no structure), BEM predictions with a sub-

merged breakwater of crest width B = 35cm. (Note: the dashed lines indicate the

extent of the breakwater).
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Fig. 14. Harmonic evolution throughout the entire computational domain. BEM

predictions of the incident wave (no structure), BEM predictions with a sub-

merged breakwater of crest width B = 70cm. (Note: the dashed lines indicate the

extent of the breakwater).
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Fig. 15. Harmonic evolution throughout the entire computational domain. BEM

predictions of the incident wave (no structure), BEM predictions with a sub-

merged breakwater of crest width B = 105cm. (Note: the dashed lines indicate the

extent of the breakwater).
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Table 3

Oscillation beat lengths calculated by the BEM model for the three wave cases and

different breakwater crest widths (Note: the superscript of Lt indicates the harmonic

involved).

Case Linear Weakly nonlinear Nonlinear

B [cm] 35 70 105 35 70 105 35 70 105

L
(1)
t [m] - - - 1.350 1.400 1.450 1.550 1.550 1.500

L
(2)
t [m] 1.217 1.225 1.225 1.375 1.375 1.375 1.525 1.550 1.550

L
(3)
t [m] - - - 1.400 1.350 1.350 1.525 1.525 1.500
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