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Abstract. We recently reported a new measurement of the electron’s electric dipole

moment using YbF molecules [Nature 473, 493 (2011)]. Here, we give a more detailed

description of the methods used to make this measurement, along with a fuller analysis

of the data. We show how our methods isolate the electric dipole moment from

imperfections in the experiment that might mimic it. We describe the systematic

errors that we discovered, and the small corrections that we made to account for these.

By making a set of additional measurements with greatly exaggerated experimental

imperfections, we find upper bounds on possible uncorrected systematic errors which

we use to determine the systematic uncertainty in the measurement. We also calculate

the size of some systematic effects that have been important in previous electric dipole

moment measurements, such as the motional magnetic field effect and the geometric

phase, and show them to be negligibly small in the present experiment. Our result is

consistent with an electric dipole moment of zero, so we provide upper bounds to its size

at various confidence levels. Finally, we review the prospects for future improvements

in the precision of the experiment.
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1. Introduction

An electron has a magnetic dipole moment associated with its spin. The extraordinarily

precise measurement of this magnetic moment [1] is a demanding test of quantum

electrodynamics and a probe for any possible electron sub-structure. A measurement of

the electron’s electric dipole moment (EDM, de) also tests the laws of physics. A non -

zero permanent electric dipole moment of an electron violates time-reversal symmetry

(T). To see that this is the case, consider how an electron changes under time-reversal:

the spin direction is reversed whereas the electric dipole moment, a static property that

measures how the electric charge is distributed, is unchanged. Since spin is the electron’s

only internal degree of freedom, either the EDM is zero or it is not zero and T-symmetry

is violated. According to the CPT theorem, violation of T-symmetry is equivalent to

violation of CP-symmetry, the combined symmetry of charge conjugation and parity

inversion. The observation of CP-violation in the decays of neutral K- and B-mesons

[2, 3, 4] is incorporated into the standard model of particle physics via the complex phase

that appears in the quark mixing matrix. As a result of this mixing, the Standard

Model predicts a non-zero electron EDM, though the prediction is exceedingly tiny,

de < 10−38 e cm [5]. CP-violation is also essential to explain the observed asymmetry

between matter and antimatter in the universe [6], but the quark mixing of the Standard

Model is unable to account for this asymmetry. Extensions of the Standard Model, most

notably supersymmetric extensions, introduce new sources of CP-violation that could

explain the observed matter-antimatter asymmetry. These new theories predict EDM

values that are far greater than in the Standard Model, typically by some 10 orders of

magnitude [7], and within the sensitivity range of current and planned experiments [8].

Measurements of the electron EDM use heavy, paramagnetic atoms or molecules

which effectively enhance the interaction of de with the applied electric field [9, 10]. For

many years the most precise measurement was made using a beam of thallium atoms,

culminating in the 2002 result which found de to be consistent with zero and set an

upper bound of |de| < 16×10−28e cm [11]. It has long been known that, because of their

much greater polarizability, polar molecules offer even higher sensitivity to de than atoms

[12, 13]. However, some of this intrinsic advantage is offset by the relative difficulty of

producing and detecting the required heavy, polar, paramagnetic molecules. Recently,

we made a new measurement of the electron EDM using a beam of YbF molecules,

and set a new upper bound [14]. Here we give a detailed account of this experiment,

focussing on the method, the analysis of the data, and the evaluation of the systematic

uncertainty.

2. Method

2.1. Overview

We measure the interaction energy between the EDM of the 174YbF molecule and an

applied electric field ~E, and interpret this as the interaction energy between the electron
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Figure 1. (a) The effective electric field for YbF as a function of the applied field.

The dashed line shows the operating field in the experiment. (b) Relevant YbF energy

levels and the transitions between them.

EDM, ~d, and an effective electric field, ~Eeff . The EDM must lie along the symmetry axis

defined by the spin, and so we write ~d = de ~σ where ~σ is a unit vector parallel to the spin.

The effective electric field accounts for the polarization of the molecule in an applied

field ~E. This effective field is ~Eeff = Emax
eff η(E)ẑ where ẑ is a unit vector parallel to ~E and

η(E) = 〈n̂ · ẑ〉 is a polarization factor, n̂ being a unit vector along the internuclear axis‡,
and the expectation value being evaluated using the eigenstate in the applied field. There

are a number of calculations of Emax
eff for YbF [15, 16, 17, 18, 19, 20], with most results

in agreement at the 10% level. We take Emax
eff = −26 GV cm−1 [16]. Figure 1(a) plots

Eeff versus E. The applied field in the experiment is E = 10 kV cm−1, and for this field

the polarization factor in the ground-state is η = 0.558, giving Eeff = −14.5 GV cm−1.

The electron EDM is not the only possible source of an interaction term proportional

to ~σ · ~E. There could also be P- and T-violating interactions between the electrons and

nucleons, which would also give rise to a permanent EDM of the molecule, and are also

sensitive to physics beyond the standard model [21]. For YbF, the most important of

these is a possible P,T-violating scalar-pseudoscalar electron-nucleon interaction [22].

We have followed the usual convention of interpreting our result entirely in terms of an

electron EDM.

The relevant energy levels of 174YbF are shown in Fig. 1(b). We use only those

molecules that are in the lowest rotational, vibrational and electronic state, X 2Σ+ (v =

0,N = 0). The interaction between the magnetic moments of the unpaired electron and

the fluorine nucleus (I = 1/2) splits the ground state into a pair of levels with total

angular momentum quantum numbers F = 0 and F = 1, separated by approximately

170 MHz. To measure the population in either hyperfine state we drive one of the two

hyperfine components of the Q(0) transition to the short-lived electronically excited

state A 2Π1/2 (v = 0,N = 0), and detect the resulting fluorescence. In an electric field

‡ Our convention is for n̂ to point in the same direction as the molecular dipole moment, i.e. from the

negative to the positive ion. Some papers in the field use a different convention, defining a unit vector

that points from the heavy nucleus to the light one. For YbF, this is in the opposite direction to our n̂.
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Eẑ the ground state of the molecule shifts down in energy. The shift is very nearly the

same for both hyperfine components, but there are also some small differential shifts

and these are particularly relevant in the experiment. The hyperfine splitting increases

with increasing E and the |F,mF 〉 = |1, 0〉 level splits away from the |1,±1〉 levels.

If the electron EDM is zero and there is no magnetic field applied, the |1,±1〉 levels

are degenerate. A small magnetic field Bẑ shifts these levels by gµBBmF , where the

g-factor is very nearly 1, while a non-zero EDM results in the energy shift −deEeffmF .

Thus, a measurement of the electric-field induced splitting between these two mF levels

measures the EDM. For the following discussion, we find it useful to define the states

|0〉 = |0, 0〉, | ± 1〉 = |1,±1〉, |c〉 = 1√
2
(|+ 1〉+ | − 1〉) and |u〉 = 1√

2
(|+ 1〉 − | − 1〉).

Figure 2 gives an overview of the experiment. The molecular beam is inside a

vacuum chamber and two layers of magnetic shielding. A detailed description of the

apparatus is given in [23]. The source produces short pulses of cold YbF molecules

that travel vertically upwards with a mean speed of 590 m/s, taking about 2.2 ms to

traverse the length of the machine. We call each traversal of the machine by the

molecules a ‘shot’ of the experiment. The machine produces a shot every 40 ms. In

the following description of a shot we shall define the moment when the molecules

are produced as the zero of time, t = 0. The molecules first encounter the ‘pump’

laser beam which propagates along x, is linearly polarized, and is tuned into resonance

with the F = 1 component of the Q(0) transition. This pumps the population out of

F = 1. About 40% of this population is transferred to F = 0. The rest is lost to

the X 2Σ+ (v = 0,N = 2) state shown in Fig. 1(b), or to higher-lying vibrational states

in X, and no longer participates in the experiment. The fluorescence induced by the

pump laser is detected on a photomultiplier tube (the ‘pump PMT’) with 10µs time

resolution, providing a measure of the molecule number in each shot.

The molecules next enter the interaction region defined by a pair of electric field

plates, 75 cm long, 7 cm wide and 1.2 cm apart, where static electric and magnetic fields

(E,B)ẑ are applied, typically with E = ±10 kV/cm and B = ±13.6 nT. The pair of

plates also acts as a TEM transmission line for propagating 170 MHz radiation in either

direction. The geometry of this transmission line ensures that the rf magnetic field is

linearly polarized along x̂. It therefore couples the states |0〉 and |c〉, but does nothing to

|u〉. At t = 1.1 ms, when the molecules are approximately 13 cm inside the field plates,

an 18µs-long rf pulse is applied with frequency tuned to the Stark-shifted |0〉 ↔ |c〉
transition frequency, and amplitude optimized for driving a π-pulse, so that all the

population is transferred from |0〉 to |c〉. During the subsequent free-evolution time of

T = 642µs, this state evolves into 1√
2
(eiφ|1,+1〉 + e−iφ|1,−1〉) = cosφ|c〉 + i sinφ|u〉

where

φ = (gµBB − deEeff)T/~. (1)

A second 18µs-long rf π-pulse is then applied, once again coupling |c〉 to |0〉, so that

the final state is cosφ|0〉+ i sinφ|u〉.
Finally, the molecules pass through the linearly-polarized ‘probe’ laser beam which
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Figure 2. Overview of the experiment. (a) Pulses of YbF molecules emitted by the

source with equal population in the 4 sublevels. (b) Population optically pumped

out of F = 1. (c) First rf pulse prepares an equal superposition of MF = +1 and

MF = −1. (d) Phase difference accumulates due to applied E and B fields. (e) Second

rf pulse transfers population back to F = 0 with a probability that depends on the

phase difference. (f) Population in F = 0 probed by laser-induced fluorescence.

propagates parallel to the pump beam and is tuned into resonance with the F = 0

component of the Q(0) transition. The polarization directions of this beam and

the pump beam are controlled by a pair of electronically rotatable polarizers. The

resulting laser-induced fluorescence is detected on a second photomultiplier tube (the

‘probe PMT’), again with 10µs time resolution. This signal measures the final |0〉
population which is proportional to cos2 φ. Figure 3 shows an example of the laser-
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Figure 3. Fluorescence measured at the probe PMT as a function of arrival time.

In analyzing EDM data we have used the part of the arrival-time distribution lying

between the dashed lines.

induced fluorescence signal measured at the probe PMT as a function of time. The

arrival-time distribution is approximately Gaussian, reflecting the velocity distribution

of the molecules.

2.2. Lineshape

Now we derive a more general expression for how the signal depends on the experimental

parameters. Our model contains only the states |0〉, | + 1〉 and | − 1〉, which (in this

order) define a basis (let us call it the ‘z-basis’). The energies of these states are −~Ω/2,

~(Ω/2 + ∆z) and ~(Ω/2 − ∆z) where Ω is the Stark-shifted hyperfine interval and

~∆z = gµBB− deEeff is the sum of the Zeeman and EDM interaction energies for static

magnetic and electric fields in the z-direction. The |1, 0〉 state plays no part in the

experiment because it is Stark-shifted by approximately 8 MHz from the | ± 1〉 states,

and because our x-polarized rf magnetic field cannot drive the transition from |0〉 to

|1, 0〉. In the z-basis, the propagator that describes the free evolution of the state vector

for a time τ is

Πfree(τ) =

 ei
Ω
2
τ 0 0

0 e−i(
Ω
2

+∆z)τ 0

0 0 e−i(
Ω
2
−∆z)τ

 . (2)

To find the propagator that describes how the state evolves in the rf magnetic field

Brf cos(ωt+ϕ)x̂, it is convenient to work in the ‘x-basis’ defined by |0〉, |c〉 and |u〉. The

two bases are related by the transformation

U = U−1 =

 1 0 0

0 1√
2

1√
2

0 1√
2
− 1√

2

 . (3)
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For a pulse of constant amplitude that turns on at time t1 and off at t1 + τ , and is

detuned from resonance by δ = ω −Ω, the solution of the time - dependent Schrödinger

equation gives the following propagator [24], written in the x-basis:

Πrf(t1, τ) =

 Zei
ω
2
τ Wei

ω
2
τei(ωt1+ϕ) 0

We−i
ω
2
τe−i(ωt1+ϕ) Z∗e−i

ω
2
τ 0

0 0 e−i
Ω
2
τ

 , (4)

where

Z = cos(
aτ

2
)− i δ

a
sin(

aτ

2
), W = −i b

a
sin(

aτ

2
), a =

√
δ2 + b2, b = 〈0| − µxBrf

~
|c〉 . (5)

Here, µx is the x-component of the magnetic dipole moment operator. In order to

obtain this propagator, we have applied the rotating-wave approximation and have

neglected the Zeeman and EDM interactions by setting ∆z = 0. In the experiment,

the rf transitions are driven in the presence of the small applied magnetic field which

rotates |c〉 into |u〉 at the angular frequency ∆z during the excitation pulse. A numerical

calculation that includes this [25] shows that the effect on the lineshape is minor - as

expected a slightly larger phase is acquired for a given Bz because there is some phase

evolution during the rf pulses, and the interference contrast is slightly reduced because

of the Zeeman splitting.

The experiment is an interferometer consisting of two rf pulses with Rabi

frequencies, durations and detunings b1,2, τ1,2 and δ1,2, having a relative phase Φrf ,

and separated by a free evolution time T . The initial and final states, |i〉 and |f〉, both

expressed in the z-basis, are related by the propagator

U · Πrf2(t+ τ1 + T, τ2) · U · Πfree(T ) · U · Πrf1(t, τ1) · U. (6)

Given that the pump laser prepares molecules in the initial state |i〉 = |0〉, and the

probe laser measures the final population in state |0〉, we find the signal to be

S = |〈0|f〉|2 = SC + SI + SR (7)

where

SC =
(
c1

2 + ∆2
1s1

2
) (
c2

2 + ∆2
1s2

2
)
, (8)

SI = β2
1β

2
2s

2
1s

2
2 cos2(φ), (9)

SR = 2β1β2s1s2 cos(φ) [(∆1∆2s1s2 − c1c2) cos(ϑ) + (∆1s1c2 + ∆2c1s2) sin(ϑ)] , (10)

and we have used the shorthand notation

ci = cos
(aiτi

2

)
, si = sin

(aiτi
2

)
, ∆i = δi/ai, βi = bi/ai. (11)

SI is the interference term of interest for measuring the EDM. It is due to the coherence

between the | ± 1〉 states which evolves with angular frequency ∆z, and is proportional

to cos2 φ with φ = ∆zT given by Eq. (1). We call the signal SR the Ramsey term. It

depends on ϑ = (ω−Ω)T+Φrf since it arises from the interference between the |0〉 ↔ |c〉
coherence, which evolves with angular frequency Ω, and the rf field which evolves with

angular frequency ω. The signal SC is a constant background, independent of both φ
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and ϑ. In the experiment, the two rf pulses have slightly different frequencies, but in

the above model we have made them equal. Within the rotating wave approximation,

the effect of the differing frequencies can simply be absorbed into the relative rf phase

Φrf .

In the ideal case where the rf detunings are zero and the pulses are perfect π-pulses

(δ1 = δ2 = 0, b1τ1 = b2τ2 = π), both the constant term and the Ramsey term are zero

and we are left with S = cos2(φ) as expected. Of course, the rf parameters can never

be perfect and so both terms are always present. The Ramsey term is of particular

concern. Because of the Stark shift of the hyperfine interval the value of Ω is sensitive

to the electric field magnitude. If this magnitude changes when E is reversed the phase ϑ

will change, with a corresponding change in S. At 10 kV cm−1 the gradient of this Stark

shift is dΩ/dE = 2π×285 Hz/(V cm−1). If the field magnitude changes by 10 parts-per-

million when it reverses, the Ramsey phase ϑ changes by about 0.1 rad. An EDM of

approximately 10−23 e.cm produces the same E-correlated change in the interferometer

phase φ. Fortunately, since SR is proportional to cos(φ), it does not change sign when B

is reversed and so is cancelled by the B-reversal. Still, if both the E− and B−reversals

are imperfect there will be a part of SR which depends on the relative directions of E

and B, just like a real EDM. We suppress this in several ways. First, the detunings and

amplitudes are tuned close to their optimum values so that SR is minimized. Second,

the phase difference Φrf is switched between φ0 + π/2 and φ0 − π/2, which reverses the

sign of SR so that it vanishes on average. Finally, on a longer timescale, φ0 is changed

at random so that any residual SR averages away over the course of the experiment.

Figure 4(a) shows the signal measured at the probe PMT, normalized to the signal

at the pump PMT. This is plotted as a function of φ, which is varied using the applied

magnetic field. At each point the signal is averaged over measurements made with

Φrf = φ0 ± π/2 so that any residual Ramsey component is removed. The line is a fit

to the model S = Sc + S0 cos2(φ − φb). Here, Sc is due to background scattered laser

light and un-pumped F = 0 molecules as well as the contribution from equation (8),

and is approximately a third of the amplitude of the interference signal. It contributes

a little to the noise in the experiment. We have included an offset phase φb in the model

to account for an uncancelled background magnetic field, which here is approximately

1.5 nT.

2.3. Switched parameters

Figure 4(b) illustrates the effect of a large EDM. It shows the dependence of the signal,

S, on the applied magnetic field, B, for two directions of E, parallel and antiparallel to z.

Reversal of E produces the phase shift δφ = 2deEeffT/~ leading to a change in the signal

δS = (dS/dφ)δφ. This change is maximized, and the gradient measured, by taking data

at the four magnetic field values indicated by the dashed lines in figure 4(b). The signals

obtained at these four B values are SA, SB, SC and SD for one direction of E and SA′ ,

SB′ , SC′ and SD′ for the opposite direction. The magnetic field is switched between
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to z. The phase shift between them is due to the EDM (vastly exaggerated for clarity).

Dashed lines indicate the 4 magnetic field values used in the experiment, and points

show the signals obtained at these B values for the two directions of E.

shots and is the summed output of two switches, B0 and δB. B0 switches the field

between ±13.6 nT, producing phases φ ' ±π/4, while δB switches between ±1.7 nT,

changing the phase by approximately ±π/32. The δB switch calibrates the slope of the

curve, and the B0 switch ensures that spurious effects, such as a drifting background

magnetic field or the Ramsey signal discussed above, are not falsely interpreted as an

EDM. The electric field is switched between ±10 kV/cm by the switch E0. From the

signals obtained at the eight measurement points, the EDM is

de =
gµBBδB

Eeff

[
(SA+SB−SC−SD−SA′−SB′ +SC′ +SD′)

(−SA+SB+SC−SD−SA′ +SB′ +SC′−SD′)

]
, (12)

where BδB = 1.7 nT is half the change in magnetic field produced by switching δB.

In addition to E0, B0 and δB, several other parameters are switched in the

experiment. The laser frequency (νl) is stepped by ±340 kHz, the frequencies of the two

rf pulses (νrf1 and νrf2) are independently stepped by ±1.5 kHz, their amplitudes (arf1

and arf2) are independently stepped by ±5%, and the phase difference (Φrf) between

them is stepped around a randomly chosen value, φ0, by ±π/2. The states of these

nine parameters are set between one molecular pulse and the next. There are 512

different combinations of these nine parameters, known as machine states. We collect

data in blocks of 4096 shots, with each of the 512 machine states visited 8 times in every

block. This allows us to determine how the signal correlates with any of the switched

parameters, or any combination of them. The signal correlated with parameter or

parameter-combination, X, is called a channel and is denoted by {X}. Table 1 gives

some example channels together with their physical meaning. In equation (12), the

numerator and denominator in the square brackets are {E0 ·B0} and {δB}, respectively,

and so this equation can be written more succinctly as

de =
gµBBδB

Eeff

{E0 ·B0}
{δB}

. (13)
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Table 1. A few of the 512 analysis channels, and their relevance.

Channel Relevance

{0} Signal averaged over all states.

{δB} Slope of interference curve.

{B0} Value of uncancelled background magnetic field.

{νrf1} Average frequency detuning of rf1.

{νrf1 ·B0} Change in interferometer phase resulting from rf1 detuning.

{νrf1 · E0} Change in rf1 detuning when E0 is reversed, due to imperfect reversal.

{E0 ·B0} EDM appears in this channel.

The modulations, and corresponding analysis channels, are crucial to the

experimental method. They provide us with error signals that we use to servo the

parameters about their optimum values. They allow us to understand how the machine

behaves when the parameters are not set perfectly. They allow the EDM to be extracted

robustly from the data even in the presence of a wide range of small imperfections.

They also provide a method for rapidly searching for any systematic errors and provide

information that can be used to correct for any systematic effects we discover.

For each switched parameter X, there is a waveform, WX , which specifies how

X is switched during a block. A waveform is a list of 4096 numbers, each having

the value +1 or -1, the ith element specifying the state of the switch during the ith

beam shot of the block. We construct the most suitable waveforms following the

methods described in [26]. Switching the parameters at high frequency ensures that

low-frequency noise is eliminated from the analysis channels. Long term signal drifts

are most effectively suppressed by using strongly aperiodic waveforms, i.e. waveforms

made up of many different frequency components. We impose both these requirements

on the all-important E0 ·B0 waveform. Each reversal of E0 incurs a dead-time of 14.2 s

and so frequent reversal is impractical; a compromise has to be made between limiting

the noise and maintaining a reasonable duty cycle. We choose to switch E0 ten times

in each block using a fixed waveform. The laser that provides the pump and probe

beams is unstable when its frequency is modulated too rapidly so we also switch νl
at low frequency using a fixed waveform. The settling time for B is less than 5 ms,

much shorter than the 40 ms time between shots, and so B0 and δB can be switched at

high frequencies. The same is true for the rf parameters. There are many satisfactory

waveforms and the computer randomly chooses new ones for all parameters except E0

and νl at the beginning of every block. This randomization prevents specific frequency

components of the background from leaking into the analysis channels the same way

in every block. A random selection of the waveforms are inverted so that blocks may

start with parameters either in the high or the low state. To ensure that none of the

machine states are missed out, the 512 waveforms corresponding to the 512 analysis

channels must all be distinct. The computer checks this is the case and, if not, chooses
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new waveforms.

2.4. Data acquisition

For each shot of the experiment, data is acquired from the probe PMT, the pump PMT,

a magnetometer situated between the two magnetic shields, three other magnetometers

placed strategically around the laboratory, two ammeters that monitor the currents

flowing to the electric field plates, and two dummy inputs (a battery and a short-

circuit). The states of the 9 switched parameters are set between one shot and the next

according to the waveforms discussed above. During a block, shots are fired with a

repetition rate of 25 Hz. The source continues to run during the dead-time when E0 is

being switched, but no data is taken during this time.

At the end of each block, error signals are derived from the channel values and used

to make small adjustments to the parameters. For example, the bias magnetic field,

which is used to cancel any background field, is adjusted between blocks according to

the value of {B0}/{δB}. The rf frequencies and amplitudes and the laser frequency are

also automatically adjusted between blocks according to the values of {νrf1 · δB}/{δB}
etc. The aim of these servo loops is to bring these channel values to zero. The pump

and probe polarizer angles and the rf phase φ0 are set to new, randomly chosen values,

and new waveforms are selected before the next block of data is acquired. Including the

dead-time, each block takes 6 minutes to acquire.

As well as the automated switching of the parameters, we also occasionally

make manual reversals. The high-voltage connections are swapped to reverse ~E, the

connections to the magnetic field coil are swapped to reverse ~B and the rf cables are

swapped to reverse the direction of rf propagation along the field plates. The manual

reversals are usually made after obtaining 50 – 100 consecutive blocks. They are valuable

for identifying and eliminating systematic effects. We make sure to obtain roughly equal

numbers of blocks in all 8 of these manual configurations. When averaging channels

containing E0 or B0 over a set of blocks, we will usually want to include a sign to

account for the manual configuration of these fields in each block. We use the symbols

E and B, which take the values ±1, for this purpose. Similarly, to denote the direction

of rf propagation we use the symbol ν.

3. Analysis of the data

The main dataset for the present measurement contains 6,194 blocks, or equivalently

25,370,624 shots. We now describe how this data is analyzed. Throughout the analysis

the EDM values themselves were concealed by adding a fixed unknown offset which

was only removed once the analysis was complete. This offset was a number chosen at

random by the computer from a normal distribution with zero mean and a standard

deviation of 5× 10−27e cm.
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3.1. Calculating channel values

We first calculate the 512 channel values for every block. The value of channel X is

given by

{X}(t) =
1

N

N∑
i=1

WX(i)
Si(t)

Ni
(14)

where N = 4096 is the number of shots in the block, WX is the waveform for X, Si(t)

is the probe PMT signal at time t for the ith shot and Ni is the integral of the pump

PMT signal for the i’th shot. Since the probe signal is a function of time, so too are the

channels. We have indicated this explicitly here, though we will often simply use {X},
the time-dependence being understood. Note that while the time-dependence of the

probe signal has been retained, this signal is normalized to the time-integrated pump

PMT signal which simply measures the number of molecules produced in the shot.

The value of {X}(t) integrated over some chosen time window is denoted 〈{X}〉
and is given by

〈{X}〉 =

∫ tf

ti

{X}(t)dt. (15)

In our analysis we have used the values of ti and tf shown by the dashed lines in figure

3. This choice minimizes the statistical uncertainty of the measurement. A narrower

time window decreases the number of molecules used in the experiment, which increases

the uncertainty. A wider time window corresponds to a longer bunch of molecules,

increasing the inhomogeneity of the static and rf fields sampled by the molecules and

thereby also increasing the measurement uncertainty.

We are often interested in products or ratios of channels, such as {X}{Y }/{Z}.
The time-integrated value of this quantity is 〈{X}{Y }/{Z}〉, the integration being done

at the end§. Note carefully that {X}{Y } is an entirely different quantity from {X ·Y }.

3.2. Accounting for non - ideal changes in lineshape

In section 2.3 we showed that, for an ideal experiment, the EDM is proportional to

{E0 · B0}/{δB}. Now we consider how to extract the EDM from the data when the

experiment is not ideal. In particular, we allow for an uncancelled background magnetic

field Bback, and we allow the amplitude of the interference curve to change by a small

amount 2a when E0 is reversed and by a small amount 2b when B0 is reversed ‖. In this

model, the signal is S(Ê0, B̂0, δ̂B) = Af(Θ) where X̂ denotes the state (±1) of switch

X, A is an amplitude given by

A = 1 + aÊ0 + bB̂0, (16)

and f is an arbitrary function of the interferometer phase Θ, with

Θ = φback + φB0B̂0 + φδB δ̂B B̂0 + φEDMÊ0. (17)

§ as opposed to 〈{X}〉〈{Y }〉/〈{Z}〉
‖ The a and b used here are not the same as those in equation (5)
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Here, φback, φB0 , and φδB are the magnetic phases due to Bback, B0 and δB, and φEDM

is the phase due to the EDM.

Provided the background magnetic field is small and φB0 is chosen appropriately, the

interference curve is very nearly linear at all points of interest and we can expand f(Θ)

about the points φback±φB0 , retaining only the constant and linear terms. Then, writing

out the signals in all the switch states, and using the notation f± = f(φback ± φB0),

f ′± = df
dΘ
|φback±φB0

, we obtain the following expressions for the channels:

{0}=
1

2
(f++f−)+

1

2
b (f+−f−)' 1

2
(f++f−) ,

{δB}=
1

2

[(
f ′+−f ′−

)
+b
(
f ′++f ′−

)]
φδB'

1

2

(
f ′+−f ′−

)
φδB,

{E0}=
1

2
a (f++f−) ,

{B0}=
1

2
(f+−f−)+

1

2
b (f++f−) ,

{E0 ·B0}=
1

2
a (f+−f−) +

1

2

(
f ′+−f ′−

)
φEDM,

{E0 · δB}=
1

2
a
(
f ′+−f ′−

)
φδB,

{B0 · δB}=
1

2

(
f ′++f ′−

)
φδB+

1

2
b
(
f ′+−f ′−

)
φδB,

{E0 ·B0 · δB} =
1

2
a
(
f ′++f ′−

)
φδB.

In deriving these expressions, we have neglected terms of the form γφEDM where γ � 1.

Provided that φback � φB0 and that E0 and B0 reversals are not too imperfect, a, b,

(f+−f−) and (f ′+ +f ′−) are all small quantities. In the expression for {0} the second

term is the product of two small quantities whereas the first is of order 1, and this leads

to the approximate result we have given. The same applies to {δB}.
As expected, {E0 ·B0} is the channel that is sensitive to the EDM, but this channel

now contains another contribution which is due to the change in amplitude upon E0

reversal (proportional to a) multiplying the non-zero Bback (proportional to (f+− f−)).

This extra contribution can be cancelled using the product of the two channels that tell

us about these two imperfections, namely {E0 · δB} and {B0}. This cancellation would

work perfectly if the {B0} channel only measured Bback, but the amplitude change due

to {B0} reversal (proportional to b) also contributes to this channel. Once again, this

extra term can be cancelled using a combination of the other channels. Thus, we obtain

the following expression for the EDM which is valid in the presence of the imperfections:

de=
gµBBδB

Eeff

EB
[
{E0 ·B0}
{δB}

− {B0}{E0 · δB}
{δB}{δB}

+ (18)

{0}
{δB}

(
{B0 · δB}{E0 · δB}
{δB}{δB}

−{E0 ·B0 · δB}
{δB}

)]
.

Here, we have included the signing according to the manual configuration of the

machine, denoted by E and B. We may regard the terms beyond {E0 ·B0} as lineshape
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Figure 5. Histogram of the EDM values measured in each block. The line is a

normal distribution with a mean of zero and a standard deviation equal to the average

statistical uncertainty per block.

correction terms. Higher order correction terms coming from the next order of the

Taylor expansion of f(Θ) and from the small terms we neglected in {0} and {δB} are

much smaller than the terms we have written down. For the measurement presented in

this paper, the leading-order correction terms (the ones in equation (18)) are 4 times

smaller than the statistical uncertainty in de, and so higher-order correction terms are

negligible. We have also considered other models for how the amplitude A might change

with the switches, for example one where the height of the interference curve changes but

the background does not. Such changes to the model change the pre-factor {0}/{δB}
in the last term of equation (18), but since this term was negligible in the experiment

the details are unimportant. We might also wonder about lineshape-changing effects

arising from imperfections in the other switched parameters. In Appendix A we use a

generalization of the procedure outlined here to derive a more general expression for

de which accounts for these additional imperfections. None of the extra terms were

important for the present measurement.

In section 3.4, we describe the measurement of an interferometer phase arising from

a detuning of rf1(2). This phase is measured by the {νrf1(2) · B0} channel. In fact, to

make sure that this phase is measured correctly in the presence of non-ideal changes to

the lineshape, we correct {νrf1(2) · B0} using the same correction terms as in equation

(18), but with E0 replaced by νrf1(2).

3.3. Mean and statistical uncertainty

Figure 5 shows the distribution of the EDM values, determined using equation (18).

The line is a normal distribution centred at zero and with a standard deviation equal

to the average statistical uncertainty per block. We see that our distribution deviates

a little from a normal distribution, there being a small excess of points near the centre
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and also in the wings of the distribution (though the latter is not visible in figure 5).

This deviation is mainly due to variations in the sensitivity of the experiment.

For non - normal distributions the mean and standard error are not robust measures.

For the central values, we use instead the 5% trimmed mean, a simple and robust statistic

that drops the smallest and largest 5% of the values. To find the statistical uncertainties

we use the bootstrap method [27, 28]. From the real experimental dataset, containing

n measurements of the quantity v, we create m (usually 5000) synthetic datasets, each

generated by drawing a random selection of n points from the real dataset. Points can

be drawn more than once, so the synthetic datasets are all different. We then calculate

the trimmed mean of each dataset by removing the smallest and largest 5 % of the values

and then taking the mean. We use the cumulative distribution function of these trimmed

mean values, CDF(v), to calculate symmetric confidence intervals. If the probability of

obtaining a result within the interval is c, the boundaries of the interval are at v± where

CDF(v±) = 0.5± c/2. For this confidence interval, the central value is v̄ = 1
2
(v+ + v−)

and the statistical uncertainty is σv = 1
2
(v+ − v−). We use these methods to find the

central value and uncertainty of the EDM and all other quantities of interest.

Before we can give the result for the central value of the EDM and the statistical

uncertainty (section 7), we must consider some systematic errors in the experiment and

the corrections applied to account for them.

3.4. rf detuning correction

The analysis of the data revealed that a detuning of either rf frequency changes the

phase of the interferometer. This phase change produces a signal in the {νrf1(2) · B0}
channel. Specifically, the rate of change of phase with rf detuning is given by

dφ

dνrf1(2)

=
{νrf1(2) ·B0}
{δB}

δφδB
δνrf1(2)

(19)

where δφδB ' π/32 is the phase change due to δB and 2δνrf1(2) ' 3 kHz is the full size of

the rf1(2) frequency step. We find that this phase changes differently when detuning rf1

and rf2, and that it depends on the direction of propagation of the rf field. On detuning of

rf1 the derivative is 316±8 nrad Hz−1 for downward propagation, and 261±8 nrad Hz−1

for upward propagation. For rf2 the equivalent values are −139 ± 7 nrad Hz−1 and

−42 ± 8 nrad Hz−1. In our numerical modelling of the experiment, we have not found

a way to produce such large phases. Our model includes imperfect settings of the rf

frequency, amplitude and polarization, the standing-wave component of the rf field as

measured in [29], and realistic changes in the magnetic field, the Stark-shifted hyperfine

frequency and the rf field as the molecules move during the rf pulse. The model does

not yet include the rf electric field or the possibility of a coherence set-up by the optical

pumping process.

Whatever their cause, these rf detuning induced phases result in a systematic EDM

shift when combined with an electric field reversal that is imperfect. Suppose that the

magnitude of the electric field changes by δE when E0 is switched. Due to the Stark shift
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Figure 6. (a) Calibration of
{νrf1(2)·E0}
{δB} versus δE. Red is for rf1 and blue is for rf2.

(b) Systematic EDM shift versus δE. Red points: before correction. Solid red line:

straight line fit to these points. Blue points: after correction using (21). Dashed blue

line: straight line fit to these points.

of the hyperfine interval, there will be a corresponding change in the rf detunings of s δE

where s = 285 Hz/(V cm−1) is the gradient of the Stark shift at the operating electric

field. This E0-correlated change in rf detuning produces a signal in the {νrf1(2) · E0}
channel. We assume the linear relationship

{νrf1(2) · E0}
{δB}

= β1(2)δE (20)

and determine the proportionality constants β1(2) in a separate experiment where we

deliberately applied large values of δE. The result of this calibration is shown in figure

6(a). We find the two proportionality constants to be equal within their uncertainties.

The size of the actual electric field asymmetry for the main data is discussed in section

4.1.

Together, the imperfect E-reversal and the detuning-induced phases generate an

interferometer phase change that is correlated with E0, and hence a systematic error.

The resulting false EDM, with signing due to the manual configuration included, is

drf1(2) =
gµBδB

Eeff

1

δνrf1(2)

s

2β

{νrf1(2) ·B0}B
{δB}

{νrf1(2) · E0}E
{δB}

. (21)

For each block of data, we apply a correction to the EDM by subtracting drf1(2) given

by (21) using the values of {νrf1(2) · E0}E/{δB} and {νrf1(2) · B0}B/{δB} measured in

each block. We have tested that this correction works by taking EDM data with large

electric field asymmetries deliberately applied. The results are shown in figure 6(b)

where the red points are the uncorrected EDM values and the blue points are the EDM

values obtained after subtracting the correction given by (21). While there is a clear

dependence on δE prior to correction, this dependence vanishes once the correction is

applied.

Applying the correction to the main dataset, and averaging over all blocks,

the rf1 phase correction is (5.0 ± 0.9) × 10−28 e.cm and the rf2 phase correction is

(0.5 ± 0.7) × 10−28 e.cm. These averages are given here for reference though we do
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Figure 7. EDM versus the part of the magnetometer signal that correlates with

the E0-reversal. The line is a straight line fit to the points and shows that the two

quantities are correlated. The slope of this fit is used to correct the EDM data.

not use them in the analysis where the corrections are made to each block and the

average of these corrected EDMs is taken.

3.5. Magnetic field correction

A major concern in the experiment is that the background magnetic field may change

when the electric field is reversed. Random changes will increase the spread of the

measurements and so increase the statistical uncertainty, while a systematic correlation

will produce a systematic shift to the measured EDM. As we will see, in our present

measurement there is no overall systematic shift due to such an E0-correlated magnetic

field, but magnetic noise does contribute (a little) to the statistical uncertainty.

The two layers of magnetic shielding reduce the background magnetic field in the

interaction region. A fluxgate magnetometer situated between these two shields samples

the field in the z-direction during each shot of the experiment. The data from this

magnetometer is analyzed in the same way as the main data from the probe PMT.

Of particular interest is the magnetometer signal in the {E0} channel, {E0}mag, since

this measures the change in the magnetic field that correlates with the E0-reversal.

Averaged over the dataset, its value is consistent with zero. Figure 7 shows, for each

block, the EDM versus {E0}mag. There is a statistically significant correlation between

these two quantities, as we would expect since they are both sensitive to the component

of the magnetic field noise that is correlated with the switching of E0. The line in figure

7 is a straight line fit to the data, which determines the gradient α. We note that

the uncertainties in the two variables are comparable, and that ordinary least squares

regression underestimates the gradient in this case. In our fit, we have corrected for this

underestimate using a ‘reliability ratio’ [30], which for this data is 0.83.

From the EDMs measured in each block we subtract the quantity α{E0}mag. This
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correction reduces the contribution of magnetic noise to the statistical uncertainty of

the measurement, though it introduces the intrinsic noise of the magnetometer into the

measurement. Overall, the statistical uncertainty is reduced by 3.5%. The mean size of

the correction is (−0.3± 1.7)× 10−28 e.cm.

4. Systematic tests

A number of auxiliary measurements were made to search for possible systematic errors.

These are measurements under exaggerated non-ideal conditions, used to set limits on

systematic shifts. All systematic shifts to the EDM are due to changes that occur in

the experiment when the electric field is switched. We start by discussing changes that

may occur to the magnitude or direction of the electric field.

4.1. Change of electric field magnitude on reversal

When the electric field is switched, relays reverse the connections between the high

voltage supplies and the field plates. Ideally, this would result in an exact field reversal,

but in practice the field magnitude changes slightly. In section 3.4 we saw an example of

how an imperfect field reversal results in a systematic error. The mechanism discussed

there is just one of several possibilities. For example, the electric field may leak into the

pump or probe region and effect the pumping or detection efficiency, so that if the field

magnitude changes when the field reverses there will be an E0-correlated change in the

detected signal. Another possibility, discussed in section 5.3, is that the sensitivity of

the molecule to magnetic fields may depend on the electric field magnitude. There are

no doubt other mechanisms that we have not thought of, so in this section we describe

our approach to empirically constrain the effect of all possible mechanisms.

To measure the effect of imperfect field reversal we made measurements of the EDM

with large electric field asymmetries applied. Upon switching E0 we changed the electric

field magnitude by δE by changing the voltage of one of the power supplies. For each

value of δE, the apparent EDM was determined using the same analysis procedure as for

the main dataset. This procedure includes the rf phase correction described in section 3.4

so that this known effect due to δE is removed from the data. The measurements then

expose any other possible systematic effects related to δE. Measurements of this kind

are shown in figure 8. The plot includes data taken for both directions of rf propagation

and we distinguish these since there appears to be a small difference between them.

At δE = 7.5 V/cm we took data in both manual E configurations and we show these

measurements as separate data points though we will not distinguish them since their

results are consistent with one another. The solid black line in figure 8 is a straight line fit

to all of the data points plotted and has a gradient of (−8.0±3.6)×10−28 e cm/(V cm−1).

Treating the data for the two directions of rf propagation separately, we obtain the

two straight line fits shown by the red and blue lines in figure 8. For the upward

propagation data the gradient is (−1.9 ± 4.4) × 10−28 e cm/(V cm−1) and so shows no
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Figure 8. Measured EDM versus applied electric field asymmetry, δE. For this data

there is also an offset voltage of V̄ = 102.5 V (see section 4.2). Red points: rf travels

upwards. Blue points: rf travels downwards. Straight line fits are shown to the whole

set of data (solid black line), to the red points only (dotted red line) and to the blue

points only (dashed blue line).

indication of any dependence on δE. For the downward propagation data the gradient is

(−21.1± 6.5)× 10−28 e cm/(V cm−1) which differs from zero by 3.2 standard deviations.

Note that for the data shown in figure 8 there is also an offset voltage of V̄ = 102.5 V

(its meaning is explained in section 4.2). Equivalent data for V̄ = 0 V are shown

by the blue points in figure 6(b) which shows no dependence on δE - the gradient is

(−0.5± 8.8)× 10−28 e cm/(V cm−1). We take the view that there is no strong evidence

for any residual systematic shifts that depend on δE, and so do not make any further

corrections to the main EDM dataset. However, since we find a hint of a dependence

on δE when V̄ = 102.5 V and when the rf propagates downwards, we suppose, quite

conservatively, that this same effect might also apply to the main dataset (which has

V̄ = 0 V). Since only half the dataset has the rf propagating downwards, we use half the

gradient found for the downward propagation direction, −11× 10−28 e cm/(V cm−1), to

determine the related systematic uncertainty.

This gradient must be multiplied by an estimate of the actual electric field

asymmetry in the main dataset. This we obtain using equation (20) and the measured

value of {νrf1(2) ·E0}/{δB}. It is useful to distinguish two sources of asymmetry, external

and internal to the machine. A change in a power supply voltage when the relays are

switched is an example of an external source of δE, whereas patch potentials on the

electric field plates are an example of an internal source. The external asymmetry can

be isolated by averaging {νrf1(2) · E0} over the two manual E configurations. Then,

the asymmetries measured in the two rf regions are consistent with one another, as

expected for an external source, and we find δEext = 0.463 ± 0.015 V cm−1. The

internal asymmetry can be isolated by signing {νrf1(2) · E0} according to the manual E

configuration (i.e. by E) and then averaging. We find different asymmetries in the two rf
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regions, δEint = 0.21±0.02 V cm−1 in the first rf region and δEint = −0.21±0.02 V cm−1

in the second rf region. That they are different suggests the presence of local patch

potentials on the electric field plates. Because reversal of the manual E configuration

changes the sign of the EDM shift due to δEext but does not change the sign of the

shift from δEint, only δEint contributes to the systematic uncertainty. We take the

asymmetries measured in the two rf regions to be typical, but since the rf regions

occupy a substantial fraction of the whole interaction region and the asymmetries are

equal and opposite in these two regions we expect some cancellation of any asymmetry-

induced effect when averaged over the interaction region. So we take a characteristic

value of |δE| = 0.1 V cm−1 giving a systematic uncertainty due to uncorrected δE effects

of 1.1× 10−28 e cm.

4.2. Electric field ground offset

Now we discuss a second type of imperfect electric field reversal. We aim to charge the

field plates to equal and opposite potentials, ±V . However, imperfect setting of the

power supplies will result in the plates being asymmetrically charged with respect to

ground, to potentials ±V + V̄ . We call the mean potential on the plates, V̄ , the offset

voltage. Due to the presence of grounded support structures, and the magnetic shield,

a non-zero V̄ results in a change in the field distribution when the relays are switched.

This could lead to a systematic EDM shift. Let us give some examples. The molecules

are only sensitive to the magnetic field component parallel to the electric field [31], and

so the interferometer phase accrued from the magnetic interaction is proportional to the

magnetic field projected along the electric field direction, integrated along the molecular

trajectory. If the electric field direction does not reverse perfectly this magnetic phase

can change. Similarly, a change in the distribution of the electric field can result in a

change in the geometric phase (see section 5.2) when E is reversed. Another possible

effect is due to the rf field whose direction rotates as it enters and exits the transmission

line. The phase imprinted by the rf pulses depends on the projection of the rf magnetic

field vector into the plane perpendicular to the electric field. A change in direction of

the electric field would result in a change in this phase. Detailed numerical modelling

suggests that all of the above effects are negligibly small in the experiment. This is

because the rf pulses are applied when the molecules are far away from the edges of

the plates, and here the electric field is little affected by the relatively distant grounded

surfaces. Conversely, a non-zero V̄ can cause the fringe fields near the edges of the

plates to change significantly on E-reversal. Leakage of these fringe fields into the

optical pumping or detection regions could change the output of the interferometer. For

example, imperfect optical pumping might produce a coherence in the F = 1 level, and

when this is combined with imperfect rf pulses and the E-correlated change in the fringe

fields, there could be a systematic EDM shift. We have not modelled this type of effect.

To investigate these and any other possible effects empirically we acquired data

with large applied offset voltages of −1000.5 V, +102.5 V and +1015 V. Each of these
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Figure 9. Systematic EDM shift versus detuning of rf1 for the four different values

of offset voltage, V̄ . Note the change in vertical scale between the graphs. Straight

line fits to the data are shown by the solid red lines. The data are consistent with

this linear model in all cases. The fit gradients, in units of 10−28 e cm kHz−1 are (a)

43.7± 1.8, (b) −43.7± 2.0, (c) −14.3± 2.0, (d) 0.3± 1.1.

datasets was analysed to reveal the apparent EDM, using the same procedure as used

for the main dataset. We found two distinct effects in these datasets. Here, we describe

these effects and analyze the impact they may have on the main dataset where V̄ = 0.

4.2.1. Correlation with rf detuning. In analyzing EDM data we routinely search for

correlations between the measured EDM and the parameters of the experiment. For

the data taken with non-zero V̄ we found such a correlation with the detuning from

resonance of rf1, as measured by the {νrf1} channel. In section 3.4 we described how

an rf detuning produces an interferometer phase, and how a change in that phase due

to imperfect electric field reversal results in a systematic shift to the EDM. The effect

discussed here is similar but the imperfect field reversal is due to the offset voltage, V̄ ,

which changes the local direction of the field rather than its magnitude. The correlation

observed here is with the {νrf1} channel, not with the {νrf1 · E0} channel, which shows

no such correlation.

In the first rf region, the electric field varies a little across the ∼ 10 cm length of the

molecular pulse, and so, via the Stark shift of the rf transition, the rf detuning varies

across the pulse. The arrival time at the detector is almost perfectly correlated with

the position of the molecules in the rf region, the ones that are ahead arriving first, so
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Figure 10. EDM shift versus offset voltage.

the {νrf1} channel naturally varies with arrival time. By dividing up the data according

to arrival time we obtain EDM values over a range of rf1 detunings. The electric field

is more constant in the second rf region than the first, and we do not observe an EDM

shift correlated with the {νrf2} channel. Figure 9 shows the systematic shift in the EDM

with rf1 detuning for the four values of V̄ . Straight line fits to the data yield the slopes

given in the caption. We see that equal and opposite values of V̄ produce equal and

opposite slopes, but the slope is not linear in V̄ . Instead, increasing V̄ by a factor of

10, from ≈ 100 V to ≈ 1000 V, only increases the slope by a factor of 3. We find that

the slopes have no dependence on the manual machine configuration.

Since the systematic shift depends on V̄ and the gradient changes sign when V̄

changes sign, the shift should go to zero for V̄ = 0. This is indeed the case, as shown

in figure 9(d), so there is no correction required to the main dataset. However, since

there is a strong correlation with {νrf1} when V̄ 6= 0, and since the scaling of the effect

with V̄ is unclear, we include a systematic uncertainty of 1.3 × 10−28 e cm due to a

possible residual {νrf1} correlation ¶. This is obtained by multiplying the uncertainty

in the measurement of the null gradient in figure 9(d), 1.1 × 10−28 e cm kHz−1, by the

measured rf1 detuning for the main dataset, 1.2 kHz. This rf detuning differs from zero,

despite the servo loop that should zero it, because there is a strong dependence of {νrf1}
on arrival time and because the gating of the time-of-flight profile used in the data

analysis (figure 3) is different to that used by the servo loop.

4.2.2. Remaining dependence on V̄ . It is straightforward to correct the datasets where

V̄ 6= 0 for the rf1 detuning dependent shift described above. The correction is the

measured gradient shown in figure 9 multiplied by the detuning of rf1, as measured

by {νrf1}. It is interesting to see whether there is any remaining dependence on

V̄ after making this correction. Figure 10 shows the dependence of the measured

¶ In [14] we assigned a systematic uncertainty of 1.0× 10−28 e cm due to a minor error in the analysis.
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EDM on V̄ after making this correction (in addition to the corrections explained in

sections 3.4 and 3.5). We see that there is still a dependence on V̄ . The data is

consistent with a linear dependence on V̄ , and a linear fit to the data gives a gradient of

(−0.099± 0.016)× 10−28 e cm V−1. We use a high voltage probe to measure the voltage

applied to each plate and thus determine the offset voltage. For the main dataset

the offset voltage was measured to be smaller than 1 V, so the resulting systematic

uncertainty is 0.1× 10−28 e cm.

4.3. Magnetic fields

A magnetic field that changes when E0 switches will produce a systematic EDM shift.

For reference, a 1 fT field along z that reverses with the state of E0 produces a systematic

EDM shift of 4× 10−30 e cm. The effect of a magnetic field perpendicular to z is vastly

smaller. This is because the Zeeman splitting between the (F = 1,MF = ±1) states is

exceedingly insensitive to the components of magnetic field perpendicular to the applied

electric field, because of the large Stark shift, h∆, of the (F = 1,MF = 0) state relative

to the other two F = 1 states [31]. The effective Hamiltonian for the F = 1 states,

written in the field-free basis in order of decreasing MF , is h∆ + gµBBz gµBBx/
√

2 0

gµBBx/
√

2 0 gµBBx/
√

2

0 gµBBx/
√

2 h∆− gµBBz

 , (22)

where Bz is the magnetic field along z, and Bx is the magnetic field along x. To give an

example, when ∆ = 8.2 MHz (the Stark shift at our operating electric field), applying

Bz = 10 nT produces a splitting between the MF = ±1 states of 280 Hz, but adding

Bx = 100 nT to this only increases that splitting by 0.1 mHz.

There are several ways that a magnetic field might be produced that changes when

E0 is switched. The first is simply that the relay and control electronics that reverse the

electric field could produce a magnetic field that depends on their state. We use three

magnetometers placed around the laboratory, and one between the inner and outer

shield, to check for this. One magnetometer, placed next to the relay that reverses

the electric field, registers a magnetic field that changes by about 7 nT when the relay

switches. However, the relays are about 5 m away from the machine, the field drops

off rapidly with distance, and the shields have a shielding factor of a few thousand, so

this field is far too small to be of concern. The other magnetometers do not register

any magnetic fields that correlate with E0. In particular, the average signal in the

{E0} channel of the magnetometer situated between the shields is zero as was already

discussed in section 3.5.

The currents that flow in the machine might also produce an E0-correlated magnetic

field. To reverse the electric field the power supply voltages are slowly ramped down to

zero, then the plates are grounded through resistors to remove any residual charge, then

the relays are switched, and finally the power supplies are slowly ramped back up again,
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before data taking resumes. The whole process takes 14 s. It is possible that the charging

or discharging currents magnetize the magnetic shields, generating a magnetic field that

depends on the direction of the electric field. This effect is minimized by keeping the

charging current below 5µA and by arranging for the high voltage feedthroughs to pass

side-by-side through a single hole in the inner shield. As a test, we built a similar

shield set-up with a similar arrangement of feedthroughs, pulsed a hundred times the

normal current through these wires, and measured the magnetic field on the axis of

the shield, one shield radius away from the centreline of the hole, using a fluxgate

magnetometer. The change in magnetic field correlated with the reversal of the electric

field was (3.9 ± 4.2) × 10−13 T. Scaling this down to the normal operating current, we

deduce a systematic EDM shift due to shield magnetization of (−0.16±0.17)×10−28 e cm.

Since this is consistent with zero, we do not make any correction but allow a systematic

uncertainty of 0.25× 10−28 e cm.

The leakage currents that flow during data-taking are another possible source of

magnetic field. These currents are monitored continuously [32], and for the main dataset

the mean current that correlates with the state of E0 is smaller than 1 nA. We consider

a worst-case model where a 1 nA current flows up the edge of one plate and down the

opposite edge of the opposite plate over half the length of the plates (since the high

voltage feedthroughs are near the centre). The magnetic field on the axis and in the z-

direction, averaged over the interaction region, is then 5 fT, and generates a systematic

shift of 0.2× 10−28 e cm. We treat this as a systematic uncertainty.

Any possible systematic shifts arising from uncontrolled magnetic fields in the

directions perpendicular to E must enter through an imperfect electric field reversal and

so are already included in our evaluation of the systematic uncertainty. Nevertheless,

as an additional check, we took a small amount of EDM data with large perpendicular

magnetic fields applied. We did these tests using an applied electric field of 2.5 kV cm−1,

4 times smaller than our normal operating field. In one test we applied approximately

±100 nT in the y-direction and in a second we applied approximately 500 nT in the

x-direction. We saw no systematic EDM shift in either case. Using these data, an

estimate of Bx(y) under normal running conditions, and a worst-case model of a phase

that depends linearly on Bx(y) but is independent of E between 2.5 and 10 kV/cm, we

obtain upper limits of 0.7×10−28 e cm for a Bx-related systematic error in the main data,

and 0.3× 10−28 e cm for By. This model is very conservative, because the sensitivity to

perpendicular magnetic fields is very strongly suppressed by the Stark shift, as discussed

above, and this Stark shift increases from 1 MHz at 2.5 kV/cm to 8.2 MHz at 10 kV/cm.

5. Other systematic effects

In the previous section we discussed our empirical evaluation of the systematic

uncertainties, mostly based on measurements made with various imperfections

exaggerated. In this section we calculate the size of some possible effects that we could

not measure directly.
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5.1. Motional magnetic field

The applied electric field ~E = Eẑ, when transformed into the rest-frame of molecules

moving with velocity ~v = vŷ, has a magnetic component ~E×~v/c2 = Bmx̂. This motional

magnetic field changes sign when E is reversed, so in conjunction with a stray magnetic

field, Bs, in the x-direction, produces a total magnetic field Bx = Bs+Bm along x whose

magnitude changes when E is reversed. This results in a systematic shift of the EDM.

Fortunately, the molecule is very insensitive to fields perpendicular to E, as discussed

in section 4.3.

The EDM shift due to the motional field is found by calculating the eigenvalues of

Hamiltonian (22), and thus determining how the splitting between the MF = ±1 states

changes when the electric field is reversed. In the experiment, g = 1, Bz = 13.6 nT,

v = 590 m s−1, E = 10 kV cm−1, and ∆ = 8.2 MHz. Taking a very conservative upper

limit for the stray magnetic field of Bs = 30 nT, the systematic EDM shift is only

5× 10−32 e cm.

5.2. Geometric phase

In addition to the dynamical phase φ given by equation (1), a geometric phase also

contributes to the total phase of the interferometer, due to the adiabatic evolution of

the molecule in fields that change their directions. Because the molecule is so insensitive

to magnetic fields perpendicular to the applied electric field, as discussed in section 4.3,

it is only the rotations of the electric field that need further consideration. The analysis

given in reference [33] shows that this phase is equal to the solid angle swept out by the

electric field vector during the period of free evolution. If the geometric phase changes

when the electric field is reversed, there will be a systematic error in the measured EDM.

There will be some rotation of the electric field direction due to the fringe fields

near the edges of the plates. For the molecules that participate in the experiment this

rotation is small enough to neglect. A more serious concern is the field rotation due

to the bend of the plates. We have mapped the electric field magnitude along y [29],

and this map tells us that, as a function of y, the field rotates about the x-axis by less

than ±0.5 mrad. From the geometry of the plates we expect the field rotation about

the y-axis to be similar. This rotation does not change, either in magnitude or in sense,

when the electric field reverses, and so it produces no systematic error.

Patch potentials on the plates also cause a change in the electric field direction. In

the case of the patch, reversal of the electric field reverses the tilt of the electric field

vector around both the x and y axes, so the sense of rotation remains unchanged and,

once again, there is no systematic error.

The production of a systematic error requires the combination of a non-uniform

gap between the plates and a patch potential. The former produces a tilt of the electric

field that does not reverse with E, while the latter produces a tilt that does reverse with

E, and so the combination generates a rotation that changes when E is reversed. We

consider a worst case example where a 1 V patch fills the second half of the interferometer
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Figure 11. Illustration of how a bowed plate and a patch potential can combine to

generate a geometric phase that changes sense when the electric field is reversed.

and covers half the width of the plate, as illustrated in figure 11. In the worst case,

we suppose that, as the molecules propagate between the regions where the rf pulses

are applied, the electric field first rotates by 1 mrad around x because of a bend in the

plates, then rotates around y as the molecules enter the region of the patch, then the

rotation around x is reversed as the bend reverses, and finally the rotation around y

reverses as the molecules leave the patch area. This sweeps out a solid-angle which

changes when E is reversed. Averaging over the volume occupied by the molecules, this

worst-case example results in a systematic error of 1× 10−30 e cm.+

5.3. Electric field dependent sensitivity to magnetic fields

At some small level, the Zeeman splitting of the F = 1 levels must depend on the

applied electric field. Considering first the parallel magnetic field, let us suppose that,

at our operating electric field, the F = 1 g-factor changes with electric field magnitude

at the rate γ, i.e. γ = (dg/d|E|)10 kV/cm. In combination with a change in electric field

magnitude δE on reversal, and a background magnetic field in the z direction, Bback,

there will be a systematic error of size

δde =
γµBBbackδE

Eeff

. (23)

We have measured how the g-factor changes with applied electric field by measuring

interference curves similar to the one shown in figure 4(a) for several values of the

+ This bound is 3 times smaller than the upper bound given in [14] due to an improved analysis.
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electric field between 3 and 14 kV/cm. We did not find any systematic variation of

the g-factor over this range of field, and the maximum possible variation consistent

with our data is γmax = 3 × 10−6 (V cm−1)−1. For the main dataset the {B0} channel

gives B
back
≈ 140 pT. With |δE| = 0.1 V cm−1 we thus obtain a maximum systematic

uncertainty from this source of 1.7× 10−31 e cm.

For a perpendicular magnetic field the g-factor is strongly suppressed by the large

electric field as described in section 4.3, but for the same reason changes rapidly with

E. The systematic shift from this effect is found by calculating how the eigenvalues

of equation (22) change for a small change in the electric field. For a perpendicular

magnetic field of 30 nT, and |δE| = 0.1 V cm−1 at E = 10 kV cm−1 the resulting

systematic EDM is only 8× 10−35 e cm.

6. Additional tests

6.1. Non-zero channels

As discussed in section 2.3, the analysis channels provide essential information about

the experiment. The {E0 · B0} channel is hidden by the blind offset, but we study

the others. In a perfect experiment only two of these other channels would be non-

zero - {0}, which is simply the total signal, and {δB}, the change in signal due to

the magnetic field step. We search the other channels looking for non-zero values. In

table 2 we report the channels that differ from zero by more than 4 times the standard

error. The channel values have been divided by the signal at the operating point on

the interference curve, to give the average fractional change in the signal resulting from

the corresponding switch. We note that if a channel {X} is significantly non-zero the

channel {X · δB} will also tend to be non-zero. We have not listed these channels since

they add no extra information, except in the case of {νl · δB}. The manual reversals of

E, B and rf-propagation direction allow eight different ways of forming the average of a

channel from the set of blocks, according to the eight ways of choosing the sign for the

manual configuration. These are E , B, ν, EB, Eν, Bν, EBν and unsigned. For example,

we find that {B0}B is non-zero, but {B0} is zero because the manual B reversal changes

its sign. We search for non-zero channels in all eight configurations. Where a channel

is non-zero for more than one manual sign, table 2 gives the value for the most relevant

sign.

The first line of the table shows that the laser frequency is significantly detuned

from the peak of the spectral line. This is due to some small lines that are not resolved

from the F = 0 line. Because of these contaminant lines we do not use the {νl} channel

to lock the laser frequency. We lock to the F = 0 line itself, rather than the peak of the

contaminated spectral line, by using the {νl · δB} channel. This channel tells us how

the slope of the interference curve changes when the laser frequency is stepped, which

is the relevant information for the lock.

The parameters of the experiment are not set quite perfectly by the feedback loops,
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Table 2. Non-zero channels. Angle brackets indicate averaging over the arrival-time

window shown in figure 3. Values give the average fractional change in the signal

resulting from the corresponding switch. The bracketed number is the statistical

uncertainty in the last digit. The last column gives the cause and, where appropriate,

the physical value corresponding to the channel value.

Channel Value (10−3) Cause

〈{νl}〉 -11.93(10) Other lines shift spectral peak by -6.5 MHz from F = 0 peak

〈{νl · δB}〉 -0.509(2) Laser frequency detuned by -1.2 MHz

〈{νrf1}〉 8.87(10) rf1 frequency detuned by 1.2 kHz

〈{νrf2}〉 -3.22(6) rf2 frequency detuned by -0.3 kHz

〈{arf1}〉 1.34(6) rf1 amplitude imperfect by 0.5%

〈{arf2}〉 0.49(5) rf2 amplitude imperfect by 0.2%

〈{B0}〉B 15.7(5) Residual magnetic field of 136 pT

〈{E0}〉E 0.52(4) Electric field reversal changes signal by 0.05%

〈{νrf1 · νrf2}〉 1.60(3) Correlation between frequency detuning of rf1 and rf2

〈{arf2 · Φrf}〉 0.77(4) Switching rf phase changes amplitude of rf2 by 0.3%

〈{νrf1 ·B0}〉B -1.42(2) Phase due to rf1 frequency detuning: 283 nrad/Hz

〈{νrf2 ·B0}〉B 0.65(2) Phase due to rf2 frequency detuning: -94 nrad/Hz

〈{νrf1 · E0}〉E 0.16(2) Switching E0 changes |E| by 0.21 V/cm in rf1 region

〈{νrf2 · E0}〉E -0.17(2) Switching E0 changes |E| by -0.21 V/cm in rf2 region

〈{νl ·B0}〉B 0.25(2) Not investigated

〈{arf1 ·B0}〉B 0.14(2) Not investigated

〈{arf2 ·B0}〉B -0.14(2) Not investigated

as shown by the next 6 lines in the table. This is no surprise since we retain all the

data, including the data at the beginning of a sequence of blocks where the servo loops

are still pulling the channels to zero. Also, the time-gate used in the analysis of the

data (figure 3) is not the same as the gate used by the servo loops. Line 8 shows that

the signal changes slightly when E0 is switched. A possible reason is that the efficiency

of the rf transitions changes slightly under an imperfect E reversal. Note that such

a change in interference amplitude, together with an uncancelled background magnetic

field, contributes a {B0}{E0·δB} correction to the {E0·B0} channel in the determination

of the EDM, as shown by equation (18). As noted in section 3.2 this correction is small.

Line 9 of table 2 shows that there is a correlation between the detunings of the two rf

pulses, probably because of drift in the high voltage power supplies which produces a

common detuning for both rf pulses via the Stark shift of the transition frequency. Line

10 shows that the device used to introduce a π phase change of the second rf pulse also

slightly changes its amplitude.

The channel {νrf1 ·B0} is non-zero for two reasons. First, there is a contribution to

this channel from the product of {νrf1 · δB} and {B0}. Once this known contribution is
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subtracted, the channel is still non-zero because a detuning of the rf1 frequency generates

an interferometer phase. The same is true for {νrf2 ·B0}. Lines 13 and 14 show that the

rf detunings change when E0 is switched because of a small change in field magnitude

which changes the Stark shift. Together, these imperfections cause the systematic error

discussed in section 3.4. More generally, a systematic error will result for any X where

{X ·B0} and {X ·E0} are both non-zero. The first shows that a change in X changes the

phase of the interferometer, while the second shows that switching E0 changes the value

of X. We see that, although there are three more non-zero channels of the type {X ·B0}
(last 3 lines) there are no other non-zero channels of the type {X · E0}. Because these

last three non-zero channels do not produce a systematic shift we have not investigated

them further. They are probably due to the combination of non-zero {X · δB} and

{B0}.
In addition to the main data from the probe fluorescence detector, we also collect

and analyze the data from the pump fluorescence detector, the magnetometer between

the shields, the three magnetometers placed around the lab, the two leakage current

monitors, and two dummy inputs (a battery and a short-circuit). Once again we

search all the channels from all these data sources for signals that correlate with

any of the switches (or combinations of switches). We find only a few that ideally

would be zero but are not. The pump detector has a large non zero value of 〈{νl}〉.
This is not at all surprising - the servo loop that locks the laser frequency uses the

signal from the probe detector, and there is inevitably a difference in the Doppler shift

between the two detectors because the pump and probe beams are not exactly parallel.

The magnetometer between the shields registers a signal in the 〈{Φrf}〉 channel, and

(marginally) in the 〈{arf1(2)}〉 channels, showing that the magnetic field generated by

the rf-phase switcher is different in its two states, as is the field generated by the rf

amplitude-switching electronics. These fields are too small to be of concern and in any

case do not depend on E0. As described in section 4.3, the magnetometer that is close

to the electric field relay has a non-zero 〈{E0}〉 channel showing that the relays produce

a magnetic field that correlates with E0. However, none of the other magnetometers

register this field showing that it falls off too rapidly with distance to have any significant

effect on the molecules. The two leakage current monitors register small signals in their

〈{B0}〉 channels, which, though baffling, are much too small to be of concern. All

channels of the dummy inputs (other than 〈{0}〉) are zero showing that there is no bias

in the data collection or analysis procedures.

6.2. Other correlations

The polarization angles of the linearly-polarized pump and probe laser beams are

changed randomly from one block to the next, and their values for each block are

recorded. We do not find any dependence on the two polarization angles when the

measured EDMs are divided up according to these angles.

We also randomly change the phase difference between the two rf pulses from one
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Table 3. Statistical uncertainty, contributions to the systematic uncertainty, and the

total systematic uncertainty.

Source Uncertainty (10−28e cm)

Total statistical uncertainty 5.7

Uncorrected effects due to electric field asymmetry, δE 1.1

Residual correlation with rf1 detuning 1.3

Uncertainty due to residual voltage offset, V̄ 0.1

Leakage currents 0.2

Shield magnetization 0.25

Geometric phase 0.01

Motional magnetic field 0.0005

Total systematic uncertainty 1.7

block to the next, as described in section 2.2. Again, we see no dependence of the EDM

on the value of this phase difference.

Finally, we do the analysis separately for each of the 8 manual machine

configurations. The EDMs obtained are all consistent with one another.

7. Result

As described in section 3.3, we find the central value of the EDM using the 5% trimmed

mean of the set of EDMs measured by each block, each corrected for the rf detuning

correction (section 3.4) and the magnetic field correction (section 3.5). The statistical

uncertainty is found from this set of corrected blocks using the bootstrap method. Table

3 gives this statistical uncertainty and summarizes the contributions to the systematic

uncertainty. The total systematic uncertainty is calculated by adding these contributions

in quadrature. The final result is

de = (−2.4± 5.7stat ± 1.7syst)× 10−28e cm. (24)

To calculate confidence intervals on the value of |de|, we create the distribution of

|de| values using the bootstrap method, and integrate this distribution from zero to dc,stat

such that the integral is c%. This dc,stat is the statistical bound of the c% confidence

interval. The systematic uncertainty for this confidence level dc,syst is derived from a

Gaussian distribution with zero mean and a standard deviation of 1.7× 10−28e cm. The

upper bound on |de| at this confidence level is then taken as
√
d2

c,stat + d2
c,syst. Table 4

gives these upper bounds for various confidence levels.

As mentioned in section 2.1, we have interpreted our measurement in terms of the

electron EDM alone. There can also be contributions to the EDM of the YbF molecule

from P,T-violating electron-nucleon interactions. To disentangle these various possible

contributions requires measurements to be made in different systems where the relative
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Table 4. Upper bounds for |de| at various confidence levels.

Confidence level (%) Bound (10−28e cm)

68.3 6.5

90.0 10.6

95.8 13.1

99.5 18.5

sensitivities to these contributions are different. To obtain the EDM of the YbF molecule

at 10 kV/cm from our electron EDM value, multiply by Eeff/E = −1.45× 106.

8. Conclusions and outlook

In this paper, we have presented a detailed account of our measurement of the electron

EDM using YbF molecules, focussing on the data analysis and the evaluation of the

uncertainties. At present, our limiting uncertainty is statistical. This is the first time

that the precision of a molecular measurement of the electron EDM has exceeded that of

the best atomic measurement. We anticipate a series of new measurements, of increasing

precision, using this new method. By separating the rf transmission line from the electric

field plates, we will use the length of the machine more efficiently, and by shortening the

rf pulses we will be able to use a higher fraction of the available molecules. With these

upgrades we expect to reduce the statistical uncertainty by a factor of 3. After this, we

aim to reduce the statistical uncertainty by a further factor of 10 or more with the use

of a cryogenic buffer gas source of YbF [34], where the flux will be 10 times higher and

the speed 3 times lower [35] than for the present source. At this higher sensitivity, it will

be necessary to reduce the magnetic noise, which can be done by adding a third layer of

magnetic shielding. A set of spin-exchange relaxation-free alkali vapour magnetometers

can be placed inside the machine to greatly improve the magnetometry. In the present

measurement we corrected for a systematic shift due to the rf-detuning induced phases.

The size of the correction was approximately equal to the statistical uncertainty. We

expect to reduce this systematic effect by at least a factor of 100 by shortening the rf

pulses by a factor of 10, improving the control over the rf polarization, and improving

the electric field reversal by a factor of 10. The latter can be done through Ramsey

interferometry of the hyperfine interval to compare the Stark shift in the two electric

field states, as we demonstrated in [36]. This improved control over the electric field

reversal will also reduce the leading systematic uncertainties to below 10−29 e cm. In the

longer term, a further large improvement in statistical sensitivity seems possible through

a combination of a thermal cryogenic source of very slow molecules [37] combined with

direct laser cooling [38]. The radiative properties of the A–X transition of YbF make it

a suitable molecule for laser cooling [39]. If these developments can be implemented, a

measurement at the 10−30 e cm sensitivity level is within reach.

Several new atomic and molecular EDM experiments are now underway or are being
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developed, as recently reviewed in [8], and they too are expected to reach similar levels

of precision. Together, these new experiments will probe deep into the region where a

non-zero EDM should be found, if current theories that extend the standard model are

correct [5].
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Appendix A. Determining the EDM in an imperfect experiment

In section 3.2 we derived an expression to extract the phase shift associated with the

electric-field switch from the measured analysis channels. We saw that if one allows

for imperfections in the experiment – namely that the E0 and B0 switches change the

amplitude of the signal and there is an uncancelled background field Bback – then terms

additional to {E0 · B0} are needed to extract the EDM phase shift. Here we consider

more general imperfections, and derive the corresponding correction terms. Following

the treatment of section 3.2 we define our signal as

S(Ê0, B̂0, δ̂B, Q̂) = Af(Θ) (A.1)

where we have introduced an extra switched parameter with state Q̂. This can be any

of the other parameters that are switched in the experiment. If both the amplitude and

phase of the signal depend on this switch then a correction will be required. We suppose

a signal amplitude of the form

A = 1 + δbB̂0 + δeÊ0 + δqQ̂+ δb,eB̂0Ê0 + δb,qB̂0Q̂+ δe,qÊ0Q̂+ δb,e,qB̂0Ê0Q̂ (A.2)

meaning that the amplitude can depend on any combination of the switched parameters,

apart from the small calibration step δ̂B. We have renamed the imperfection parameters,

as compared to section 3.2, to make the notation more straightforward. We define the

phase function

f(Θ) = (φbackB̂0 + φδB δ̂B + φEDM B̂0Ê0 + φQB̂0Q̂)− β. (A.3)

This phase function is essentially the same as that used in section 3.2 except for the

addition of a phase, φQ, which depends on the switch state Q̂. To simplify the derivation,

we have defined f(Θ) to be linear in the switched parameters directly, rather than

carrying through an arbitrary function and linearizing as in section 3.2. The parameter

β is proportional to f(φB0) of section 3.2.

We wish to determine the ratio of φEDM to φδB . It is straightforward, though quite

tedious, to show that

φEDM
φδB

=
1

N
(T1 + T2 + T3 + β(T4 + T5)) , (A.4)

where

N ={δB}3+2{δB ·Q}{δB · E0}{δB · E0 ·Q}−{δB}
(
{δB ·Q}2+{δB · E0}2+{δB · E0 ·Q}2

)
T1 =

(
{δB}2 − {δB ·Q}2

)
{B0 · E0}

T2 = ({δB ·Q}{B0 ·Q} − {B0}{δB}) {δB · E0}
T3 = ({B0}{δB ·Q} − {δB}{B0 ·Q}) {δB · E0 ·Q}
T4 = {δB}{δB ·B0 · E0} − {δB ·B0}{δB · E0} − {δB ·B0 ·Q}{δB · E0 ·Q}

T5 =
{δB ·Q}
{δB}

({δB · E0}{δB ·B0 ·Q} − {δB ·Q}{δB ·B0 · E0}+ {δB ·B0}{δB · E0 ·Q})

None of the additional correction terms were used in the analysis presented in this

paper, as they were all negligibly small.
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